Skip to main content

Advertisement

Log in

Advances in multiplex molecular detection technologies for harmful algae

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

As the eutrophication of natural water bodies becomes more and more serious, the frequency of outbreaks of harmful algal blooms (HABs) mainly formed by harmful algae also increases. HABs have become a global ecological problem that poses a serious threat to human health and food safety. Therefore, it is extremely important to establish methods that can rapidly detect harmful algal species for early warning of HABs. The traditional morphology-based identification method is inefficient and inaccurate. In recent years, the rapid development of molecular biology techniques has provided new ideas for the detection of harmful algae and has become a research hotspot. The current molecular detection methods for harmful algal species mainly include fluorescence in situ hybridization, sandwich hybridization, and quantitative PCR (qPCR), but all of these methods can only detect single harmful algal species at a time. The establishment of methods for the simultaneous detection of multiple harmful algal species has become a new trend in the development of molecular detection technology because various harmful algal species may coexist in the natural water environment. The established molecular techniques for multiple detections of harmful algae mainly include gene chip, multiplex PCR, multiplex qPCR, massively parallel sequencing, antibody chip, and multiple isothermal amplification. This review mainly focuses on the principles, advantages and disadvantages, application progress, and application prospects of these multiple detection technologies, aiming at providing effective references not only for the fisheries but also for economic activities, environment, and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ahn S, Kulis DM, Erdner DL, Anderson DM, Walt DR (2006) Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species. Appl Environ Microb 72:5742–5749

    Article  CAS  Google Scholar 

  • Al-Tebrineh J, Pearson LA, Yasar SA, Neilan BA (2012) A multiplex qPCR targeting hepato- and neurotoxigenic cyanobacteria of global significance. Harmful Algae 15:19–25

    Article  CAS  Google Scholar 

  • Ambardar S, Gupta R, Trakroo D, Lal R, Vakhlu J (2016) High throughput sequencing: an overview of sequencing chemistry. Indian J Microbiol 56:394–404

    Article  CAS  Google Scholar 

  • Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Ann Rev Mar Sci 4:143–176

    Article  Google Scholar 

  • Anderson DM, Kulis DM, Keafer BA, Gribble KE, Marin R, Scholin CA (2005) Identification and enumeration of Alexandrium spp. from the Gulf of Maine using molecular probes. Deep-Sea Res Pt II 52:2467–2490

    Article  Google Scholar 

  • Berdalet E, Fleming LE, Gowen R, Davidson K, Hess P, Backer LC, Moore SK, Hoagland P, Enevoldsen H (2016) Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. J Mar Biol Assoc Uk 96:61–91

    Article  Google Scholar 

  • Blanco Y, Quesada A, Gallardo-Carreño I, Aguirre J, Parro V (2015) CYANOCHIP: an antibody microarray for high-taxonomical-resolution cyanobacterial monitoring. Environ Sci Technol 49:1611–1620

    Article  CAS  Google Scholar 

  • Borkman DG, Smayda TJ, Schwarz EN, Flewelling LJ, Tomas CR (2014) Recurrent vernal presence of the toxic Alexandrium tamarense/Alexandrium fundyense (Dinoflagellata) species complex in Narragansett Bay, USA. Harmful Algae 32:73–80

    Article  Google Scholar 

  • Brient L, Ben Gamra N, Periot M, Roumagnac M, Zeller P, Bormans M, Méjean A, Ploux O, Biegala IC (2017) Rapid characterization of microcystin-producing cyanobacteria in freshwater lakes by TSA-FISH (Tyramid signal amplification-fluorescent in situ hybridization). Front Env Sci-Switz 5:43

    Article  Google Scholar 

  • Brumme CJ, Poon AFY (2017) Promises and pitfalls of Illumina sequencing for HIV resistance genotyping. Virus Res 239:97–105

    Article  CAS  Google Scholar 

  • Cabada MM, Crannell ZA, Richards-Kortum R, White AC, Irani A, Castellanos-Gonzalez A (2015) Recombinase polymerase amplification-based assay to diagnose Giardia in stool samples. Am J Trop Med Hyg 92:583–587

    Article  CAS  Google Scholar 

  • Cahill DJ (2001) Protein and antibody arrays and their medical applications. J Immunol Methods 250:81–91

    Article  CAS  Google Scholar 

  • Casadellà M, Paredes R (2017) Deep sequencing for HIV-1 clinical management. Virus Res 239:69–81

    Article  CAS  Google Scholar 

  • Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Caskey CT (1988) Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 16:11141–11156

    Article  CAS  Google Scholar 

  • Chen GF, Liu Y, Zhang CY, Ma CS, Zhang BY, Wang GC, Xu Z, Lu DD (2013) Development of rRNA-targeted probes for detection of Prorocentrum micans (Dinophyceae) using whole cell in situ hybridization. J Appl Phycol 25:1077–1089

    Article  CAS  Google Scholar 

  • Chen GF, Cai PP, Zhang CY, Wang Y, Zhang S, Guo C, Lu DD (2015) Hyperbranched rolling circle amplification as a novel method for rapid and sensitive detection of Amphidinium carterae. Harmful Algae 47:66–74

    Article  CAS  Google Scholar 

  • Chen M, Yang X, Yang M, Zhang W, Li L, Sun Q (2019) Identification of a novel biomarker-CCL5 using antibody microarray for colorectal cancer. Pathol Res Pract 215:1033–1037

    Article  CAS  Google Scholar 

  • Chen Q, Zhang C, Liu F, Ma H, Wang Y, Chen G (2020) Easy detection of Karlodinium veneficum using PCR-based dot chromatography strip. Harmful Algae 99:101908

    Article  CAS  Google Scholar 

  • Chen X, Zhou Q, Duan W, Zhou C, Duan L, Zhang H, Sun A, Yan X, Chen J (2016) Development and evaluation of a DNA microarray assay for the simultaneous detection of nine harmful algal species in ship ballast and seaport waters. Chin J Oceanol Limn 34:86–101

    Article  CAS  Google Scholar 

  • Chen Z, Dodig-Crnković T, Schwenk JM, Tao S (2018) Current applications of antibody microarrays. Clin Proteom 15:7

    Article  CAS  Google Scholar 

  • Cui Z, Xu Q, Gibson K, Liu S, Chen N (2021) Metabarcoding analysis of harmful algal bloom species in the Changjiang Estuary. China. Sci Total Environ 782:146823

    Article  CAS  Google Scholar 

  • Cui Y, Jia J, Sha N, Li JF, Wang GZ (2016) Application of real-time fluorescent quantitative PCR in plant. Agricultural Sci Technol 17:273–278

    Google Scholar 

  • Danchenko S, Fragoso B, Guillebault D, Icely J, Berzano M, Newton A (2019) Harmful phytoplankton diversity and dynamics in an upwelling region (Sagres, SW Portugal) revealed by ribosomal RNA microarray combined with microscopy. Harmful Algae 82:52–71

    Article  CAS  Google Scholar 

  • Darienko T, Gustavs L, Eggert A, Wolf W, Pröschold T (2015) Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS One 10

    Article  CAS  Google Scholar 

  • Doll C, Main CR, Bianco C, Coyne KJ, Greenfield DI (2014) Comparison of sandwich hybridization assay and quantitative PCR for the quantification of live and preserved cultures of Heterosigma akashiwo (Raphidophyceae). Limnol Oceanoge-Meth 12:232–245

    Article  CAS  Google Scholar 

  • Dou Y, Gao JW, Shi XT, Chen RN, Zhou WL (2015) Outbreak frequency and factors influencing red tides in nearshore waters of south China sea form 2000 to 2013. J Hydroecol 36:31–37

    Google Scholar 

  • Dzhembekova N, Urusizaki S, Moncheva S, Ivanova P, Nagai S (2017) Applicability of massively parallel sequencing on monitoring harmful algae at Varna Bay in the Black Sea. Harmful Algae 68:40–51

    Article  Google Scholar 

  • Eckford-Soper LK, Daugbjerg N (2015) Development of a multiplex real-time qPCR assay for simultaneous enumeration of up to four marine toxic bloom-forming microalgal species. Harmful Algae 48:37–43

    Article  CAS  Google Scholar 

  • Erdner DL, Percy L, Keafer B, Lewis J, Anderson DM (2010) A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments. Deep-Sea Res Pt II 57:279–287

    Article  CAS  Google Scholar 

  • Faye O, Faye O, Soropogui B, Patel P, El Wahed AA, Loucoubar C, Fall G, Kiory D, Magassouba N, Keita S, Kondé MK, Diallo AA, Koivogui L, Karlberg H, Mirazimi A, Nentwich O, Piepenburg O, Niedrig M, Weidmann M (2015) Sall AA(2015) Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in. Euro Surveill 20:10–18

    Article  Google Scholar 

  • Fisher R, van Zyl GU, Travers SAA, Kosakovsky Pond SL, Engelbrech S, Murrell B, Scheffler K, Smith D (2012) Deep sequencing reveals minor protease resistance mutations in patients failing a protease inhibitor regimen. J Virol 86:6231–6237

    Article  CAS  Google Scholar 

  • Fu MQ, Chen GF, Zhang CY, Wang YY, Sun R, Zhou J (2019) Rapid and sensitive detection method for Karlodinium veneficum by recombinase polymerase amplification coupled with lateral flow dipstick. Harmful Algae 84:1–9

    Article  CAS  Google Scholar 

  • Fu MQ, Yang YC, Zhang CY, Chen GF, Wang YY (2020) Recombinase polymerase amplification combined with lateral-flow dipstick for rapid detection of Prorocentrum minimum. J Appl Phycol 32:1837–1850

    Article  CAS  Google Scholar 

  • Gaiani G, Cucchi F, Toldrà A, Andree KB, Rey M, Tsumuraya T, O’Sullivan CK, Diogène J, Campàs M (2022) Electrochemical biosensor for the dual detection of Gambierdiscus australes and Gambierdiscus excentricus in field samples First report of G excentricus in the Balearic Islands. Sci Total Environ 806:150915

    Article  CAS  Google Scholar 

  • Gao J, Jiao Y, Zhang WG (2014) Overview of sequence alignment for high-throughput sequencing data. Life Sci Res 18:458–464

    CAS  Google Scholar 

  • Giglio S (2003) Demonstration of preferential binding of SYBR Green I to specific DNA fragments in real-time multiplex PCR. Nucleic Acids Res 31:136e

    Article  CAS  Google Scholar 

  • Ginés I, Gaiani G, RuhelaVasso S, Mònica C, Lluis M (2021) Nucleic acid lateral flow dipstick assay for the duplex detection of Gambierdiscusaustrales and Gambierdiscusexcentricus. Harmful Algae 110:102135

    Article  CAS  Google Scholar 

  • Goodwin S, Mcpherson JD, Mccombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  Google Scholar 

  • Guillebault D, Medlin LK (2020) Application of the μAqua microarray for pathogenic organisms across a marine/freshwater interface. Harmful Algae 92:101703

    Article  CAS  Google Scholar 

  • Harshitha R, Arunraj DR (2021) Real-time quantitative PCR: a tool for absolute and relative quantification. Biochem Mol Biol Edu 49:800–812

    Article  CAS  Google Scholar 

  • Herranz S, Marazuela MD, Moreno-Bondi MC (2012) Automated portable array biosensor for multisample microcystin analysis in freshwater samples. Biosens Bioelectron 33:50–55

    Article  CAS  Google Scholar 

  • Huang H, Shao Q, Zhu X, Luo J, Meng R, Zhou C, Zhu P, Zhu Y, Yan X (2019) Distribution of Karlodinium veneficum in the coastal region of Xiangshan Bay in the East China Sea, as detected by a real-time quantitative PCR assay of ribosomal its sequence. Harmful Algae 81:65–76

    Article  CAS  Google Scholar 

  • Ki J, Han M (2006) A low-density oligonucleotide array study for parallel detection of harmful algal species using hybridization of consensus PCR products of LSU rDNA D2 domain. Biosens Bioelectron 21:1812–1821

    Article  CAS  Google Scholar 

  • Kim JH, Kim J, Park BS, Wang P, Patidar SK, Han M (2017) Development of a qPCR assay for tracking the ecological niches of genetic sub-populations within Pseudo-nitzschia pungens (Bacillariophyceae). Harmful Algae 63:68–78

    Article  CAS  Google Scholar 

  • Kralik P, Ricchi M (2017) A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front Microbiol 8:1–9

    Article  Google Scholar 

  • Le T, Chiarella J, Simen BB, Hanczaruk B, Egholm M, Landry ML, Dieckhaus K, Rosen MI, Kozal MJ (2009) Low-abundance HIV drug-resistant viral variants in treatment-experienced persons correlate with historical antiretroviral use. PLoS One 4:e6079

    Article  CAS  Google Scholar 

  • Li J, Wang C, Yu X, Lin H, Hui C, Shuai L, Zhang S (2019) Rapid detection of cyanobacteria by recombinase polymerase amplification combined with lateral flow strips. Water Sci Tech-w Sup 19:1181–1186

    Article  CAS  Google Scholar 

  • Lin SJ, Ji NJ, Luo H (2019) Recent progress in marine harmful algae bloom research. J Oceanol Limnol 50:495–510

    CAS  Google Scholar 

  • Liu FG, Chen GF, Zhang CY, Wang YY, Zhou J (2019) Exponential rolling circle amplification coupled with lateral flow dipstick strips as a rapid and sensitive method for the field detection of Karlodinium veneficum. J Appl Phycol 31:2423–2436

    Article  Google Scholar 

  • Liu Y, Mustapha A (2014) Detection of viable Escherichia coli O157:H7 in ground beef by propidium monoazide real-time PCR. Int J Food Microbiol 170:48–54

    Article  CAS  Google Scholar 

  • Loureiro S, Newton A, Icely JD (2005) Microplankton composition production and upwelling dynamics in Sagres (SW Portugal) during summer of 2001. Sci Mar 69:323–341

    Article  CAS  Google Scholar 

  • Loukas C-M, McQuillan JS, Laouenan F, Tsalogloua M-N, Ruano-Lopezc JM, Mowlem MC, Nefeli Tsalogloua BJMR (2017) Detection and quantification of the toxic microalgae Karenia brevis using lab on a chip mRNA sequence-based amplification. J Microbiol Meth 139:189–195

    Article  CAS  Google Scholar 

  • Lv SH, Cen JY, Wang JY, Ou LJ (2019) The research status quo, hazard, and ecological mechanisms of karenia mikimotol red in coastal waters of China. Chin J Oceanol Limn 50:487–494

    Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  Google Scholar 

  • Mcelroy K, Thomas T, Luciani F (2014) Deep sequencing of evolving pathogen populations: applications, errors, and bioinformatic solutions. Microb Inf Exp 4:1

    Article  Google Scholar 

  • Metzker ML (2010) Sequencing technologies — the next generation. Nat Rev Genet 11:31–46

    Article  CAS  Google Scholar 

  • Moorthie S, Mattocks CJ, Wright CF (2011) Review of massively parallel DNA sequencing technologies. The HUGO J 5:1–12

    Article  Google Scholar 

  • Morais SL, Barros P, Santos M, Delerue-Matos C, Gomes AC, Fátima Barroso M (2021) Electrochemical genosensor for the detection of Alexandriumminutum dinoflagellates. Talanta 222:121416

    Article  CAS  Google Scholar 

  • Nagai S (2011) Development of a multiplex PCR assay for simultaneous detection of six Alexandrium species (dinophyceae). J Phycol 47:703–708

    Article  CAS  Google Scholar 

  • Nagai S, Miyamoto S, Ino K, Tajimi S, Nishi H, Tomono J (2016) Easy detection of multiple Alexandrium species using DNA chromatography chip. Harmful Algae 51:97–106

    Article  CAS  Google Scholar 

  • Nie XL, Zhang CY, Wang YY, Guo CL, Zhou J, Chen GF (2017) Application of hyper-branched rolling circle amplification (HRCA) and HRCA-based strip test for the detection of Chattonella marina. Environ Sci Pollut R 24:15678–15688

    Article  CAS  Google Scholar 

  • Noyer C, Abot A, Trouilh L, Leberre VA, Dreanno C (2015) Phytochip: Development of a DNA-microarray for rapid and accurate identification of Pseudo-nitzschia spp. and other harmful algal species. J Microbiol Meth 112:55–66

    Article  CAS  Google Scholar 

  • Orozco J, Medlin LK (2011) Electrochemical performance of a DNA-based sensor device for detecting toxic algae. Sensor Actuat B-Chem 153:71–77

    Article  CAS  Google Scholar 

  • Plotnikova MA, Klotchenko SA, Lebedev KI, Lozhkov AA, Taraskin AS, Gyulikhandanova NE, Ramsay ES, Vasin AV (2020) Antibody microarray immunoassay for screening and differential diagnosis of upper respiratory tract viral pathogens. J Immunol Methods 478:112712

    Article  CAS  Google Scholar 

  • Ponchel F, Toomes C, Bransfield K, Leong FT, Douglas SH, Field SL, Bell SM, Combaret V, Puisieux A, Mighell AJ, Robinson PA, Inglehearn CF, Isaacs JD, Markham AF (2003) Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. Bmc Biotechnol 3:18

    Article  Google Scholar 

  • Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A Literature Survey Anal Bioanal Chem 393:569–582

    Article  CAS  Google Scholar 

  • Qiu P, Chen Y, Li C, Huo D, Bi Y, Wang J, Li Y, Li R, Yu G (2021) Using molecular detection for the diversity and occurrence of cyanobacteria and 2-methylisoborneol-producing cyanobacteria in an eutrophicated reservoir in northern China. Environ Pollut 288:117772

    Article  CAS  Google Scholar 

  • Reslova N, Skorpikova L, Kyrianova IA, Vadlejch J, Höglund J, Skuce P, Kasny M (2021) The identification and semi-quantitative assessment of gastrointestinal nematodes in fecal samples using multiplex real-time PCR assays. Parasite Vector 14:391

    Article  CAS  Google Scholar 

  • Römpler H, Dear PH, Krause J, Meyer M, Rohland N, Schöneberg T, Spriggs H, Stiller M, Hofreiter M (2006) Multiplex amplification of ancient DNA. Nat Protoc 1:720–728

    Article  CAS  Google Scholar 

  • Rucker VC, Havenstrite KL, Herr AE (2005) Antibody microarrays for native toxin detection. Anal Biochem 339:262–270

    Article  CAS  Google Scholar 

  • Sahu B, Singh SD, Behera BK, Panda SK, Das A, Parida PK (2019) Rapid detection of Salmonella contamination in seafoods using multiplex PCR. Braz J Microbiol 50:807–816

    Article  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  Google Scholar 

  • Scorzetti G, Brand LE, Hitchcock GL, Rein KS, Sinigalliano CD, Fell JW (2009) Multiple simultaneous detection of harmful algal blooms (HABs) through a high throughput bead array technology, with potential use in phytoplankton community analysis. Harmful Algae 8:196–211

    Article  CAS  Google Scholar 

  • Sahu B, Singh SD, Behera BK, Panda SK, Das A Parida PK (2019) Rapid detection of Salmonella contamination in seafoods using multiplex PCR. Braz J Microbiol 50(3):807–816

    Article  CAS  Google Scholar 

  • Sun YJ, Chen GF, Zhang CY, Guo CL, Wang YY, Sun R (2019) Development of a multiplex polymerase chain reaction assay for the parallel detection of harmful algal bloom-forming species distributed along the Chinese coast. Harmful Algae 84:36–45

    Article  CAS  Google Scholar 

  • Sun YJ (2019) Development of a multiplex polymerase chain reaction assay for the parallel detection of harmful algal bloom-forming species distributed along the Chinese coast. Dissertation, Harbin Institute of Technology

  • Toldra A, Jauset-Rubio M, Andree KB, Fernandez-Tejedor M, Diogene J, Katakis I, O’Sullivan CK, Campas M (2018) Detection and quantification of the toxic marine microalgae Karlodinium veneficum and Karlodinium armiger using recombinase polymerase amplification and enzyme-linked oligonucleotide assay. Anal Chim Acta 1039:140–148

    Article  CAS  Google Scholar 

  • Toldrà A, O’Sullivan CK, Diogène J, Campàs M (2020) Detecting harmful algal blooms with nucleic acid amplification-based biotechnological tools. Sci Total Environ 749:141605

    Article  CAS  Google Scholar 

  • Vinod Nair S, Madhulaxmi Thomas G, Ankathil R (2020) Next-generation sequencing in cancer. J M Aaxillofac Oral Surg 20:340–344

    Article  Google Scholar 

  • Wang BK, Zhang CY, Liu FG, Li R, Wang YY, Chen GF (2021) Development of a recombinase polymerase amplification combined with lateral flow dipstick assay for rapid and sensitive detection of Heterosigma akashiwo. J Appl Phycol 33:3165–3178

    Article  CAS  Google Scholar 

  • Wang L, Chen GF, Zhang CY, Wang YY, Sun R (2019) Rapid and sensitive detection of Amphidinium carterae by loop-mediated isothermal amplification combined with a chromatographic lateral-flow dipstick. Mol Cell Probe 43:72–79

    Article  CAS  Google Scholar 

  • Wang L, Zhang CY, Chen GF, Wang YY, Fu MQ (2020) Development of a rapid screening test for Karenia mikimotoi by using loop-mediated isothermal amplification and lateral flow dipstick. J Appl Phycol 32:3143–3155

    Article  CAS  Google Scholar 

  • Wei X, Li Y, Lu X, Zhao RT, Yuan ZQ, Shi H, Zhao XN (2021) Rapid detection of Yersinia pestis by real-time Recombinase-aided Amplification. Biomed Environ Sci 34:309–313

    CAS  Google Scholar 

  • Wilcox TM, Mckelvey KS, Young MK, Jane SF, Lowe WH, Whiteley AR, Schwartz MK (2013) Robust detection of rare species using environmental DNA the importance of primer specificity. PLoS One 8:e59520

    Article  CAS  Google Scholar 

  • Xu X, Yu Z, Cheng F, He L, Cao X, Song X (2017) Molecular diversity and ecological characteristics of the eukaryotic phytoplankton community in the coastal waters of the Bohai Sea, China. Harmful Algae 61:13–22

    Article  Google Scholar 

  • Xu WT, He PM, Zhang YH, Han JJ (2015) Rapid detection of Enteromorpha algae based on multiple fluorescence PCR method. China Society of Fisheries Hangzhou, Zhejiang, China

    Google Scholar 

  • Zhang CY, Chen GF, Cai PP, Wang YY, Guo CL (2015) Development and evaluation of a reverse dot blot assay for the simultaneous detection of common toxic microalgae along the Chinese coast. Harmful Algae 47:86–96

    Article  CAS  Google Scholar 

  • Zhang CY, Chen GF, Liu Y, Wang YY, Xu Z, Zhang BY, Wang GC (2014) Simultaneous detection of harmful algae by multiple polymerase chain reaction coupled with reverse dot blot hybridization. Harmful Algae 35:9–19

    Article  CAS  Google Scholar 

  • Zhang CY, Chen G, Ma C, Wang Y, Zhang B, Wang G (2014) Parallel detection of harmful algae using reverse transcription polymerase chain reaction labeling coupled with membrane-based DNA array. Environ Sci Pollut R 21:4565–4575

    Article  CAS  Google Scholar 

  • Zhang CY, Wang YY, Guo CL, Chen GF, Kan GF, Cai PP, Zhou J (2018) Comparison of loop-mediated isothermal amplification with hyperbranched rolling circle amplification as a simple detection method for Heterosigma akashiwo. Harmful Algae 73:1–11

    Article  CAS  Google Scholar 

  • Zhang F, Shi Y, Jiang K, Song W, Ma C, Xu Z, Ma L (2014) Rapid detection and quantification of Prorocentrum minimum by loop-mediated isothermal amplification and real-time fluorescence quantitative PCR. J Appl Phycol 26:1379–1388

    Article  CAS  Google Scholar 

  • Zhang SF, Wang Q, Guan CY, Shen RL (2020) Study on the occurrence law of red tide and its influencing factors in the offshore waters of china from 2001 to2017. Acta Scientiarum Naturalium Universitatis Pekinensis 56:1129–1140

    Google Scholar 

  • Zhang ZH, Xie ST, Han BP, Lin SJ, Zhong XY (2005) Primary studies on the detection of Microcystis cyanobacteria and microcystin synthetase gene by the whole cell multiplex PCR. Ecol Sci 1:31–34

    Google Scholar 

  • Zhen Y, Mi T, Yu Z (2009) Detection of several harmful algal species by sandwich hybridization integrated with a nuclease protection assay. Harmful Algae 8:651–657

    Article  CAS  Google Scholar 

  • Zhong Q, Bhattacharya S, Kotsopoulos S, Olson J, Taly V, Griffiths AD, Link DR, Larson JW (2011) Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip 11:2167

    Article  CAS  Google Scholar 

  • Zhong ZC, Wang SY (2020) Advances in multiplex PCR technology studies. J Biotechnol 36:171–179

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation, China (ZR2020MD081); the National Scientific Foundation of China (no. 31600309, 41476086); HIT Scientific Research Innovation Fund/the Fundamental Research Funds for the Central Universities (no. HIT.NSRIF.201702 and HIT.NSRIF.201709); HIT Environment and Ecology Innovation Special Funds (no. HSCJ201622).

Funding

This work was supported by the Shandong Provincial Natural Science Foundation, China (ZR2020MD081); the National Scientific Foundation of China (no. 31600309, 41476086); HIT Scientific Research Innovation Fund/the Fundamental Research Funds for the Central Universities (no. HIT.NSRIF.201702 and HIT.NSRIF.201709); HIT Environment and Ecology Innovation Special Funds (no. HSCJ201622).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the paper: Chunyun Zhang and Guofu Chen; Analysis and arrangement of documents: Yuanyuan Wang and Hanyu Fu; Wrote the paper: Hanyu Fu.

Corresponding author

Correspondence to Guofu Chen.

Ethics declarations

Ethics approval

All the authors would like to seriously state that: (a) the material used in this MS has not been published in whole or in part elsewhere; (b) the paper is not currently being considered for 372 publication elsewhere; (c) all authors have been personally and actively involved in substantive work leading to the report, and will hold themselves jointly and individually responsible for its content; (d) all relevant ethical safeguards have been met in this study.

Consent to participate

There is no participant in the MS.

Consent for publication

All the authors consent to publish all the data included in the MS.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Vitor Vasconcelos

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Zhang, C., Wang, Y. et al. Advances in multiplex molecular detection technologies for harmful algae. Environ Sci Pollut Res 29, 43745–43757 (2022). https://doi.org/10.1007/s11356-022-20269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20269-z

Keywords

Navigation