Skip to main content
Log in

Parallel detection of harmful algae using reverse transcription polymerase chain reaction labeling coupled with membrane-based DNA array

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Harmful algal blooms (HABs) are a global problem, which can cause economic loss to aquaculture industry's and pose a potential threat to human health. More attention must be made on the development of effective detection methods for the causative microalgae. The traditional microscopic examination has many disadvantages, such as low efficiency, inaccuracy, and requires specialized skill in identification and especially is incompetent for parallel analysis of several morphologically similar microalgae to species level at one time. This study aimed at exploring the feasibility of using membrane-based DNA array for parallel detection of several microalgae by selecting five microaglae, including Heterosigma akashiwo, Chaetoceros debilis, Skeletonema costatum, Prorocentrum donghaiense, and Nitzschia closterium as test species. Five species-specific (taxonomic) probes were designed from variable regions of the large subunit ribosomal DNA (LSU rDNA) by visualizing the alignment of LSU rDNA of related species. The specificity of the probes was confirmed by dot blot hybridization. The membrane-based DNA array was prepared by spotting the tailed taxonomic probes onto positively charged nylon membrane. Digoxigenin (Dig) labeling of target molecules was performed by multiple PCR/RT-PCR using RNA/DNA mixture of five microalgae as template. The Dig-labeled amplification products were hybridized with the membrane-based DNA array to produce visible hybridization signal indicating the presence of target algae. Detection sensitivity comparison showed that RT-PCR labeling (RPL) coupled with hybridization was tenfold more sensitive than DNA-PCR-labeling-coupled with hybridization. Finally, the effectiveness of RPL coupled with membrane-based DNA array was validated by testing with simulated and natural water samples, respectively. All of these results indicated that RPL coupled with membrane-based DNA array is specific, simple, and sensitive for parallel detection of microalgae which shows promise for monitoring natural samples in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Absher M (1973) Hemocytometer counting. In: Kruse PE Jr, Patterson MK Jr (eds) Tissue Culture: Methods and Applications. Academic, NewYork, pp 395–397

    Chapter  Google Scholar 

  • Ahn S, Kulis DM, Erdner DL, Anderson DM, Walt DR (2006) Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species. Appl Environ Microbiol 72:5742–5749

    Article  CAS  Google Scholar 

  • Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag 52:342

    Article  Google Scholar 

  • Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Ann Rev Mar Sci 4:143–176

    Article  Google Scholar 

  • Cai QS, Li RX, Zhen Y, Mi TZ, Yu ZG (2006) Detection of two Prorocentrum species using sandwich hybridization integrated with nuclease protection assay. Harmful Algae 5:300–309

    Article  CAS  Google Scholar 

  • Chen GF, Liu Y, Zhang CY, Ma CS, Zhang BY, Wang GC (2013) Development of rRNA-targeted probes for detection of Prorocentrum micans (Dinophyceae) using whole cell in situ hybridization. J Appl Phycol 25:1077–1089

    Article  CAS  Google Scholar 

  • Chen GF, Wang GC, Zhang BY, Fan XL, Zhou BC (2007) Morphological and phylogenetic analysis of Skeletonema costatum-like diatoms (Bacillariophyta) from the China Sea. Eur J Phycol 42:163–175

    Article  Google Scholar 

  • Chen GF, Zhang CY, Zhang BY, Wang GC, Lu DD, Xu Z, Yan PS (2011) Development of a PNA Probe for fluorescence in situ hybridization detection of Prorocentrum donghaiense. PLoS ONE 6:e25527

    Article  CAS  Google Scholar 

  • Delaney JA, Ulrich RM, Paul JH (2011) Detection of the toxic marine diatom Pseudo-nitzschia multiseries using the RuBisCO small subunit (rbcS) gene in two real-time RNA amplification formats. Harmful Algae 11:54–64

    Article  CAS  Google Scholar 

  • Diercks S, Metfies K, Medlin LK (2008) Development and adaptation of a multiprobe biosensor for the use in a semiautomated device for the detection of toxic algae. Biosens Bioelectron 23:1527–1533

    Article  CAS  Google Scholar 

  • Dittami SM, Hostyeva V, Egge ES, Kegel JU, Eikrem W, Edvardsen B (2013a) Seasonal dynamics of harmful algae in outer Oslofjorden monitored by microarray, qPCR, and microscopy. Environ Sci Pollut Res 20:6719–6732

    Article  Google Scholar 

  • Dittami SM, Riisberg I, Edvardsen B (2013b) Molecular probes for the detection and identification of ichthyotoxic marine microalgae of the genus Pseudochattonella (Dictyochophyceae, Ochrophyta). Environ Sci Pollut Res 20:6824–6837

    Article  CAS  Google Scholar 

  • Edvardsen B, Dittami SM, Groben R, Brubak S, Escalera L, Rodríguez F, Reguera B, Chen JX, Medlin LK (2013) Molecular probes and microarrays for the detection of toxic algae in the genera Dinophysis and Phalacroma (Dinophyta). Environ Sci Pollut Res 20:6733–6750

    Article  CAS  Google Scholar 

  • Galluzi L, Cegna A, Casabianca S, Penna A, Sunder N, Magnnai M (2011) Development of an oligonucleotide microarray for the detection and monitoring of marine dinoflagellates. J Microbiol Meth 84:234–242

    Article  Google Scholar 

  • Gescher C, Metfies K, Frickenhaus S, Knefelkamp B, Wiltshire KH, Medlin LK (2008a) Feasibility of assessing the community composition of prasinophytes at the Helgoland roads sampling site with a DNA microarray. Appl Environ Microbiol 74:5305–5316

    Article  CAS  Google Scholar 

  • Gescher C, Metfies K, Medlin LK (2008b) The ALEX Chip–Development of a DNA chip for identification and monitoring of Alexandrium. Harmful Algae 7:485–494

    Article  CAS  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of Marine Invertebrate Animals. Plenum Press, New York, pp 29–60

    Chapter  Google Scholar 

  • Guillou L, Nézan E, Cueff V, Erard L, Denn E, Cambon-Bonavita MA, Gentien P, Barbier G (2002) Genetic diversity and molecular detection of three toxic dinoflagellate genera (Alexandrium, Dinophysis, and Karenia) from French coasts. Protist 153:223–238

    Article  CAS  Google Scholar 

  • Guo Z, Guilfoyle RA, Thiel AJ, Wang R, Smith LM (1994) Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res 22:5456–5465

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99

    Article  Google Scholar 

  • Handy SM, Demir E, Hutchins DA, Portune KJ, Whereat EB, Hare CE, Rose JM, Warner M, Farestad M, Cary SC, Coyne KJ (2008) Using quantitative real-time PCR to study competition and community dynamics among Delaware Inland Bays harmful algae in field and laboratory studies. Harmful Algae 7:599–613

    Article  CAS  Google Scholar 

  • Handy SM, Hutchins DA, Cary SC, Coyne KJ (2006) Simultaneous enumeration of multiple raphidophyte species by quantitative real-time PCR: capabilities and limitations. Limnol Oceanogr Meth 4:193–204

    Article  Google Scholar 

  • Heil CA, Glibert PM, Fan CL (2005) A review of a harmful algal bloom species of growing worldwide importance. Harmful Algae 4:449–470

    Article  CAS  Google Scholar 

  • Jedlicki A, Fernandez G, Astorga M, Oyarzun P, Toro JE, Navarro JM, Martinez V (2012) Molecular detection and species identification of Alexandrium (Dinophyceae) causing harmful algal blooms along the Chilean coastline. AoB Plants pls033

  • John U, Medlin LK, Groben R (2005) Development of specific rRNA probes to distinguish between geographic clades of the Alexandrium tamarense species complex. J Plankton Res 27:199–204

    Article  CAS  Google Scholar 

  • Kamikawa R, Nagai S, Hosoi-Tanabe S, Itakura S, Yamaguchi M, Uchida Y, Baba T, Sako Y (2007) Application of real-time PCR assay for detection and quantification of Alexandrium tamarense and Alexandrium catenellacysts from marine sediments. Harmful Algae 6:413–420

    Article  CAS  Google Scholar 

  • Kegel JU, Amo YD, Medlin LK (2013) Introduction to project MIDTAL: its methods and samples from Arcachon Bay, France. Environ Sci Pollut Res 20:6690–6704

    Article  Google Scholar 

  • Ki JS, Han MS (2006) A low-density oligonucleotide array study for parallel detection of harmful algal species using hybridization of consensus PCR products of LSU rDNA D2 domain. Biosens Bioelectron 21:1812–1821

    Article  CAS  Google Scholar 

  • Kim JS, Wang N (2009) Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR. BMC Res Notes 2:37

    Article  Google Scholar 

  • Lilly EL, Halanych KM, Anderson DM (2007) Species boundaries and global biogeography of the Alexandrium tamarense complex (dinophyceae). J Phycol 43:1329–1338

    Article  CAS  Google Scholar 

  • McCoy GR, Touzet N, Fleming GT, Raine R (2013) An evaluation of the applicability of microarrays for monitoring toxic algae in Irish coastal waters. Environ Sci Pollut Res 20:6751–6764

    Article  CAS  Google Scholar 

  • McDonald SM, Sarno D, Scanlan DJ, Zingone A (2007) Genetic diversity of eukaryotic ultraplankton in the Gulf of Naples during an annual cycle. Aqat Micro Ecol 50:75–89

    Article  Google Scholar 

  • Metfies K, Berzano M, Mayer C, Roosken P, Gualerzi C, Medlin LK, Muyzer G (2007) An optimized protocol for the identification of diatoms, flagellated algae, and pathogenic protozoa with phylochips. Mol Ecol Notes 7:925–936

    Article  CAS  Google Scholar 

  • Metfies K, Medlin LK (2008) Feasibility of transferring fluorescent in situ hybridization probes to an 18S rRNA gene phylochip and mapping of signal intensities. Appl Environ Microbiol 74:2814–2821

    Article  CAS  Google Scholar 

  • Mikulski CM, Park YT, Jones KL, Lee CK, Lim WA, Lee Y, Scholin CA, Doucette GJ (2008) Development and field application of rRNA-targeted probes for the detection of Cochlodinium polykrikoides Margalef in Korean coastal waters using whole cell and sandwich hybridization formats. Harmful Algae 7:347–359

    Article  CAS  Google Scholar 

  • Moon-Van Der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  CAS  Google Scholar 

  • Scholin CA, Buck KR, Britschgi T, Cangelosi G, Chavez FP (1996) Identification of Pseudo-nitzschia australis (Bacillariophyceae) using rRNA-targeted probes in whole cell and sandwich hybridization formats. Phycologia 35:190–197

    Article  Google Scholar 

  • Scholin CA, Herzog M, Sogin M, Anderson DM (1994) Identification of group-and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae): sequence analysis of a fragment of the LSU rRNA gene. J Phycol 30:999–1011

    Article  CAS  Google Scholar 

  • Scorzetti G, Brand LE, Hitchcock GL, Rein KS, Sinigalliano CD, Fell JW (2009) Multiple simultaneous detection of harmful algal blooms (HABs) through a high throughput bead array technology, with potential use in phytoplankton community analysis. Harmful Algae 8:196–211

    Article  CAS  Google Scholar 

  • Taylor JD, Berzano M, Percy L, Lewis J (2013) Evaluation of the MIDTAL microarray chip for monitoring toxic microalgae in the Orkney Islands, UK. Environ Sci Pollut Res 20:6765–6777

    Article  CAS  Google Scholar 

  • Yershov G, Barsky V, Belgovskiy A, Kirillov E, Kreindlin E, Ivanov I, Parinov S, Guschin D, Drobishev A, Dubiley S, Mirzabekov A (1996) DNA analysis and diagnostics on oligonucleotide microchips. Proc Natl Acad Sci U S A 93:4913–4918

    Article  CAS  Google Scholar 

  • Zwirglmaier K, Ludwig W, Schleifer KH (2004) Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization—RING-FISH. Mol Microbio 51:89–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Scientific Foundation of China (41106082, 41176141); Shandong Province Young and Middle-Aged Scientists Research Awards Fund (BS2010HZ002); Key Laboratory of Marine Ecology and Environmental Science and Engineering, SOA (MESE-2011-06); Basic Research of Harbin Institute of Technology outstanding talents cultivation plan of class III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofu Chen.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Chen, G., Ma, C. et al. Parallel detection of harmful algae using reverse transcription polymerase chain reaction labeling coupled with membrane-based DNA array. Environ Sci Pollut Res 21, 4565–4575 (2014). https://doi.org/10.1007/s11356-013-2416-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2416-0

Keywords

Navigation