Skip to main content
Log in

Effects of polystyrene microplastics on copper toxicity to the protozoan Euglena gracilis: emphasis on different evaluation methods, photosynthesis, and metal accumulation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microplastics (MPs) released into aquatic environment interact with other pollutants that already exist in water, potentially altering their toxicity, which poses a new problem for aquatic ecosystems. In the present study, we first evaluated the effects of polystyrene MPs (mPS) on copper (Cu) toxicity to the protozoan Euglena gracilis using three methods based on 96-h acute toxicity, orthogonal test and 12-d sub-acute toxicity data. Thereafter, the 12-d sub-acute exposure was employed to investigate protozoan growth, photosynthetic parameters and pigments, soluble protein, total antioxidant capacity and trace metal accumulation in E. gracilis after exposure to either 1.5 mg/L of Cu, 75-nm mPS (1 and 5 mg/L) or a combination therein, with the objective to understand the underlined mechanisms. The results show that the concentration and exposure time are key factors influencing the effects of the mPS on Cu toxicity. A mPS concentration of 5 mg/L caused significantly more dissipation energy, which is used for photosynthesis and thus decreased photosynthetic efficiency, but this effect weakened after 12 d of exposure. Exposure to Cu alone resulted in significantly high Cu accumulation in the cells and inhibited uptake of manganese and zinc. The presence of mPS did not influence the effects of Cu on trace metal accumulation. Our result suggests that application of multiple methods and indices could provide more information for a comprehensive understanding of the effects of mPS on toxicity of other pollutants. In addition, long-term exposure seems necessary for evaluating mPS toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Albergoni V, Piccinni E, Coppellotti O (1980) Response to heavy metals in organisms—I. Excretion and accumulation of physiological and non physiological metals in Euglena gracilis. Comp Biochem Phys C: Comparative Pharmacology 67:121–127

    Article  Google Scholar 

  • Azizullah A, Nasir A, Richter P, Lebert M, Häder D-P (2011) Evaluation of the adverse effects of two commonly used fertilizers, DAP and urea, on motility and orientation of the green flagellate Euglena gracilis. Environ Exp Bot 74:140–150

    Article  CAS  Google Scholar 

  • Bergami E, Pugnalini S, Vannuccini M, Manfra L, Faleri C, Savorelli F, Dawson K, Corsi I (2017) Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliellatertiolecta and Artemiafranciscana. Aquat Toxicol 189:159–169

    Article  CAS  Google Scholar 

  • Besseling E, Wang B, Lürling M, Koelmans AA (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48:12336–12343

    Article  CAS  Google Scholar 

  • Bhattacharya P, Lin S, Turner JP, Ke PC (2010) Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J Phys Chem C 114:16556–16561

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bodnar OI, Viniarska HB, Vasilenko OV, Grubinko VV (2016) Pigment content of Chlorella vulgaris Beij. under influence of sodium selenite and metals ions. Biotechnology 9:71–78

    Google Scholar 

  • Burns EE, Boxall AB (2018) Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environ Toxicol Chem 37:2776–2796

    Article  CAS  Google Scholar 

  • Casado MP, Macken A, Byrne HJ (2013) Ecotoxicological assessment of silica and polystyrene nanoparticles assessed by a multitrophic test battery. Environ Int 51:97–105

    Article  CAS  Google Scholar 

  • Cauwenberghe LV, Vanreusel A, Mees J, Janssen CR (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182:495–499

    Article  Google Scholar 

  • Checcucci A, Colombetti G, Ferrara R, F L (1976) Action spertra for photoaccumulation of green and colorless Euglena: evidence for identification of receptor pigments. Photochem Photobiol 23:51–54

  • Danilov R, Ekelund N (2000) Effects of copper on growth rate, cell shape, motility and photosynthesis in the green flagellate Euglena gracilis in a long-term experiment. Biologia (bratislava) 55:413–418

    CAS  Google Scholar 

  • Davarpanah E, Guilhermino L (2015) Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmischuii. Estuar Coast Shelf Sci 167:269–275

    Article  CAS  Google Scholar 

  • Einicker-Lamas M, Mezian GA, Fernandes TB, Silva FLS, Guerra F, Miranda K, Attias M, Oliveira MM (2002) Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. Environ Pollut 120:779–786

    Article  CAS  Google Scholar 

  • El-Sheekh M, El-Naggar A, Osman M, El-Mazaly E (2003) Effect of cobalt on growth, pigments and the photosynthetic electron transport in Monoraphidiumminutum and Nitzchiaperminuta. Braz J Plant Physiol 15:159–166

    Article  CAS  Google Scholar 

  • Franqueira D, Orosa M, Torres E, Herrero C, Cid A (2000) Potential use of flow cytometry in toxicity studies with microalgae. Sci Total Environ 247:119–126

    Article  CAS  Google Scholar 

  • Fu D, Zhang Q, Fan Z, Qi H, Wang Z, Peng L (2019) Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris. Aquat Toxicol 216:105319

    Article  CAS  Google Scholar 

  • Gunasekaran D, Chandrasekaran N, Jenkins D, Mukherjee A (2020) Plain polystyrene microplastics reduce the toxic effects of ZnO particles on marine microalgae Dunaliella salina. J Environ Chem Eng 8:104250

    Article  CAS  Google Scholar 

  • Hu C, Wang Q, Zhao H, Wang L, Guo S, Li X (2015) Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis. Chemosphere 128:184–190

    Article  CAS  Google Scholar 

  • Hu C, Hu N, Li X, Zhao Y (2016) Graphene oxide alleviates the ecotoxicity of copper on the freshwater microalga Scenedesmus obliquus. Ecotoxicol Environ Safe 132:360–365

    Article  CAS  Google Scholar 

  • Huang X, Huang Z, Wen W, Yan J (2013) Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmissubcordiformis, Nannochloropsisoculata and Pavlova viridis). J Appl Phycol 25:129–137

    Article  Google Scholar 

  • Katrina, Kaposi, Benjamin, Mos, Brendan, Kelaher, Symon (2014) Ingestion of microplastic has limited impact on a marine larva. Environ Sci Technol 48:1638–1645

  • Kondzior P, Butarewicz A (2018) Effect of heavy metals (Cu and Zn) on the content of photosynthetic pigments in the cells of algae Chlorella vulgaris. J Ecol Eng 19

  • Leslie H, Brandsma S, Van Velzen M, Vethaak A (2017) Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ Int 101:133–142

    Article  CAS  Google Scholar 

  • Li M, Hu C, Zhu Q, Chen L, Kong Z, Liu Z (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572

    Article  CAS  Google Scholar 

  • Li M, Hu C, Gao X, Xu Y, Qian X, Brown MT, Cui Y (2009) Genotoxicity of organic pollutants in source of drinking water on microalga Euglena gracilis. Ecotoxicology 18:669–676

    Article  CAS  Google Scholar 

  • Li Z, Yi X, Zhou H, Chi T, Li W, Yang K (2020) Combined effect of polystyrene microplastics and dibutyl phthalate on the microalgae Chlorella pyrenoidosa. Environ Pollut 257:113604

    Article  CAS  Google Scholar 

  • Liao Y, Jiang X, Xiao Y, Li M (2020) Exposure of microalgae Euglena gracilis to polystyrene microbeads and cadmium: Perspective from the physiological and transcriptional responses. Aquat Toxicol 228:105650

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Analysis (Peach) 11:591–592

    CAS  Google Scholar 

  • Liu X, Wang J (2020) Algae (Raphidocelissubcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia. Front Environ Sci Eng 14:1–10

    Article  CAS  Google Scholar 

  • Manfra L, Rotini A, Bergami E, Grassi G, Faleri C, Corsi I (2017) Comparative ecotoxicity of polystyrene nanoparticles in natural seawater and reconstituted seawater using the rotifer Brachionus plicatilis. Ecotoxicol Environ Safe 145:557–563

    Article  CAS  Google Scholar 

  • Mao Y, Ai H, Chen Y, Zhang Z, Zeng P, Kang L, Li W, Gu W, He Q, Li H (2018) Phytoplankton response to polystyrene microplastics: perspective from an entire growth period. Chemosphere 208:59–68

    Article  CAS  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochem Biophys Acta 1058:87–106

    CAS  Google Scholar 

  • Miao L, Hou J, You G, Liu Z, Liu S, Li T, Mo Y, Guo S, Qu H (2019) Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size concentration and surface modification. Environ Pollut 255:113300

    Article  CAS  Google Scholar 

  • Miazek K, Iwanek W, Remacle C, Richel A, Goffin D (2015) Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci 16:23929–23969

    Article  CAS  Google Scholar 

  • Morelli E, Scarano G (2004) Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylumtricornutum. Plant Sci 167:289–296

    Article  CAS  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA) (2009): In: Arthur C, Baker J, Bamford H, editors. Proceedings of the international research workshop on the occurrence, effects and fate of microplastic marine debris. Sept 9–11, 2008, R-30. NOAA Technical Memorandum NOS-OR& R-30; 530 pp.

  • OECD (2006) Freshwater Alga and Cyanobacteria, Growth Inhibition Test.

  • Peng C, Lee J-W, Sichani HT, Ng JC (2015) Toxic effects of individual and combined effects of BTEX on Euglena gracilis. J Hazard Mater 284:10–18

    Article  CAS  Google Scholar 

  • Perryman, Miriam, Law, Kara, Lavender, Wilcox, Chris, Siegler, Theodore, R. (2015): Plastic waste inputs from land into the ocean. Science 347:768–771

  • Pham T-L (2019) Effect of silver nanoparticles on tropical freshwater and marine microalgae. J Chem 2019

  • Prata JC, Lavorante BR, Maria da Conceição B, Guilhermino L (2018) Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmischuii. Aquat Toxicol 197:143–152

    Article  CAS  Google Scholar 

  • Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T (2019) Effects of microplastics on microalgae populations: A critical review. Sci Total Environ 665:400–405

    Article  CAS  Google Scholar 

  • Procházková G, Brányiková I, Zachleder V, Brányik T (2014) Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J Appl Phycol 26:1359–1377

    Article  Google Scholar 

  • Puspitasari R, Purbonegoro T, Agustin A (2018) Cu toxicity on growth and chlorophyll-a of Chaetoceros sp, IOP Conference Series: Earth Environ Sci. IOP Publishing, pp 012061

  • Raven JA, Evans MC, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O 2-evolving organisms. Photosynth Res 60:111–150

    Article  CAS  Google Scholar 

  • Rocchetta I, Küpper H (2009) Chromium-and copper-induced inhibition of photosynthesis in Euglena gracilis analysed on the single-cell level by fluorescence kinetic microscopy. New Phytol 182:405–420

    Article  CAS  Google Scholar 

  • Rodriguez IB, Ho T-Y (2018) Trace metal requirements and interactions in Symbiodiniumkawagutii. Front Microbiol 9:142

    Article  Google Scholar 

  • Romero N, Visentini FF, Márquez VE, Santiago LG, Castro GR, Gagneten AM (2020) Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles. Environ Res 189:109857

    Article  CAS  Google Scholar 

  • Sabatini SE, Juárez ÁB, Eppis MR, Bianchi L, Luquet CM, de Molina MDCR (2009) Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicol Environ Safe 72(4):1200–1206

    Article  CAS  Google Scholar 

  • Sjollema SB, Redondo-Hasselerharm P, Leslie HA, Kraak MHS, Vethaak AD (2016) Do plastic particles affect microalgal photosynthesis and growth? Aquat Toxicol 170:259–261

    Article  CAS  Google Scholar 

  • Sun L, Sun S, Bai M, Wang Z, Zhao Y, Huang Q, Hu C, Li X (2021) Internalization of polystyrene microplastics in Euglena gracilis and its effects on the protozoan photosynthesis and motility. Aquat Toxicol 236:105840

    Article  CAS  Google Scholar 

  • Sunda W (2012) Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front Microbiol 3:204

    Article  Google Scholar 

  • Sunda WG (1989) Trace metal interactions with marine phytoplankton. Biol Oceanogr 6:411–442

    Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101–1118

    Article  CAS  Google Scholar 

  • Tunali M, Uzoefuna EN, Tunali MM, Yenigun O (2020) Effect of microplastics and microplastic-metal combinations on growth and chlorophyll a concentration of Chlorella vulgaris. Sci Total Environ 743:140479

    Article  CAS  Google Scholar 

  • Vymazal J (1995) Algae and element cycling in wetlands. Lewis Publishers Inc.

  • Wang Z, Gao Y, Wang S, Fang H, Xu D, Zhang F (2016) Impacts of low-molecular-weight organic acids on aquatic behavior of graphene nanoplatelets and their induced algal toxicity and antioxidant capacity. Environ Sci Pollut Res 23:10938–10945

    Article  CAS  Google Scholar 

  • Watanabe F, Yoshimura K, Shigeoka S (2017) Biochemistry and physiology of vitamins in Euglena. Euglena: Biochemistry, Cell and Molecular biology, 65–90

  • Wei L, Huang X, Huang Z, Zhou Z (2013) Orthogonal test design for optimization of lipid accumulation and lipid property in Nannochloropsisoculata for biodiesel production. Biores Technol 147:534–538

    Article  CAS  Google Scholar 

  • Xiao Y, Jiang X, Liao Y, Zhao W, Zhao P, Li M (2020): Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae. Chemosphere, 126914

  • Yang G-F, Jin R-C (2012) The joint inhibitory effects of phenol, copper (II), oxytetracycline (OTC) and sulfide on Anammox activity. Biores Technol 126:187–192

    Article  CAS  Google Scholar 

  • Yang W, Gao X, Wu Y, Wan L, Tan L, Yuan S, Ding H, Zhang W (2020) The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa. Ecotox Environ Safe 195:110484

    Article  CAS  Google Scholar 

  • Zhang C, Chen X, Wang J, Tan L (2017) Toxic effects of microplastic on marine microalgae Skeletonemacostatum: interactions between microplastic and algae. Environ Pollut 220:1282–1288

    Article  CAS  Google Scholar 

  • Zhang F, Wang Z, Wang S, Fang H, Chen M, Xu D, Tang L, Wang D (2016) Physicochemical properties and ecotoxicological effects of yttrium oxide nanoparticles in aquatic media: role of low molecular weight natural organic acids. Environ Pollut 212:113–120

    Article  CAS  Google Scholar 

  • Zhang Y, Liu M, Liu J, Wang X, Wang C, Ai W, Chen S, Wang H (2018) Combined toxicity of triclosan, 2, 4-dichlorophenol and 2, 4, 6-trichlorophenol to zebrafish (Danio rerio). Environ Toxicol Pharmacol 57:9–18

    Article  CAS  Google Scholar 

  • Zhu X, Zhao W, Chen X, Zhao T, Tan L, Wang J (2020) Growth inhibition of the microalgae Skeletonema costatum under copper nanoparticles with microplastic exposure. Mar Environ Res 158:105005

    Article  CAS  Google Scholar 

  • Zhu Z, Wang S, Zhao F, Wang S, Liu F, Liu G (2019) Joint toxicity of microplastics with triclosan to marine microalgae Skeletonemacostatum. Environ Pollut 246:509–517

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Zhejiang Province (LY19C030003).

Author information

Authors and Affiliations

Authors

Contributions

Xiuling Li: Methodology, Original draft preparation. Zhengjun Wang: Investigation, Software. Ming Bai: Investigation, Software. Zhehua Chen: Investigation, Data curation. Gan Gu: Investigation, Validation. Xi Li: Methodology, Reviewing and Editing. Changwei Hu: Supervision, Methodology, Original draft preparation, Writing- Reviewing. Xuezhen Zhang: Data curation, Methodology.

All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Changwei Hu or Xuezhen Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Bruno Nunes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6450 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, Z., Bai, M. et al. Effects of polystyrene microplastics on copper toxicity to the protozoan Euglena gracilis: emphasis on different evaluation methods, photosynthesis, and metal accumulation. Environ Sci Pollut Res 29, 23461–23473 (2022). https://doi.org/10.1007/s11356-021-17545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17545-9

Keywords

Navigation