Skip to main content
Log in

Fly ash–based nanocomposites: a potential material for effective photocatalytic degradation/elimination of emerging organic pollutants from aqueous stream

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Fly ash is readily available and cheaply generated as 47a by-product of the combustion of organic matter. A tremendous amount of fly ash is generated worldwide, and its disposal has imposed 47a severe environmental concern. Its good adsorption capacities attracted several researchers to study the use of fly ash as 47a support for photocatalysts for the degradation of contaminants from wastewater. Undoubtedly the photocatalysts supported on fly ash have represented excellent degradation efficiencies due to the synergistic effect of adsorption and photocatalytic capacity. The utilization of fly ash as 47a precursor has solved the problem of disposal and added value to the waste by-product. Various preparation techniques for fly ash–based nanocomposites such as the sol-gel method, hydrothermal method, solvothermal method, precipitation and co-precipitation, modified metalorganic decomposition, electrospinning, incipient impregnation, and wet chemical synthesis, along with 47a brief study of their characterization using scanning electron microscopy, X-ray diffraction technique and Fourier transform infrared (FTIR) spectroscopy, and the mechanism of photodegradation of dyes have been discussed in this paper. The literature shows that SiO2, TiO2, and Al2O3 present in fly ash play an essential role in the photodegradation of dyes. Factors affecting the degradation of dyes, their kinetic studies, and methods to enhance photodegradation efficiency have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this published article.

References

  • Adam F, Appaturi JN, Thankappan R, Nawi MAM (2010) Silica–tin nanotubes prepared from rice husk ash by sol–gel method: characterization and its photocatalytic activity. Appl Surf Sci 257(3):811–816

    Article  CAS  Google Scholar 

  • Adam F, Appaturi JN, Khanam Z, Thankappan R, Nawi MAM (2013) Utilization of tin and titanium incorporated rice husk silica nanocomposite as photocatalyst and adsorbent for the removal of methylene blue in aqueous medium. Appl Surf Sci 264:718–726

    Article  CAS  Google Scholar 

  • Adeleke JT, Theivasanthi T, Thiruppathi M, Swaminathan M, Akomolafe T, Alabi AB (2018) Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. Appl Surf Sci 455:195–200

    Article  CAS  Google Scholar 

  • Agarwal S, Rani A (2017) Adsorption of resorcinol from aqueous solution onto CTAB/NaOH/flyash composites: equilibrium, kinetics and thermodynamics. J Environ Chem Eng 5(1):526–538

    Article  CAS  Google Scholar 

  • Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36(3):327–363

    Article  CAS  Google Scholar 

  • Ahmed AE, Adam F (2007) Indium incorporated silica from rice husk and its catalytic activity. Microporous Mesoporous Mater 103(1-3):284–295

    Article  CAS  Google Scholar 

  • Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261(1-2):3–18

    Article  CAS  Google Scholar 

  • Ahmed S, Rasul MG, Brown R, Hashib MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manag 92(3):311–330

    Article  CAS  Google Scholar 

  • Ahmed S et al (2021) Effective removal of methylene blue using nanoscale manganese oxide rods and spheres derived from different precursors of manganese. J Phys Chem Solids 155:110121

    Article  CAS  Google Scholar 

  • Ameta N, et al. (2012)“Copper modified iron oxide as heterogeneous photo-Fenton reagent for the degradation of Coomassie brilliant blue R-250.” .

  • An D, Guo Y, Zou B, Zhu Y, Wang Z (2011) A study on the consecutive preparation of silica powders and active carbon from rice husk ash. Biomass Bioenergy 35(3):1227–1234

    Article  CAS  Google Scholar 

  • An N, Ma Y, Liu J, Ma H, Yang J, Zhang Q (2018) Enhanced visible-light photocatalytic oxidation capability of carbon-doped TiO2 via coupling with fly ash. Chin J Catal 39(12):1890–1900

    Article  CAS  Google Scholar 

  • Aquino CLE, Balela MDL (2020) Thermally grown Zn-doped hematite (α-Fe2O3) nanostructures for efficient adsorption of Cr (VI) and Fenton-assisted degradation of methyl orange. SN Appl Sci 2(12):1–16

    Article  CAS  Google Scholar 

  • Aydoghmish SM, Hassanzadeh-Tabrizi SA, Saffar-Teluri A (2019) Facile synthesis and investigation of NiO–ZnO–Ag nanocomposites as efficient photocatalysts for degradation of methylene blue dye. Ceram Int 45(12):14934–14942

    Article  CAS  Google Scholar 

  • Badreldin A et al (2021) Surface microenvironment engineering of black V2O5 nanostructures for visible light photodegradation of methylene blue. J Alloys Compd 871:159615

    Article  CAS  Google Scholar 

  • Baur E, Perret A (1924) The action of light on dissolved silver salts in the presence of zinc oxide. Helv Chim Acta 7:910–915

    Article  CAS  Google Scholar 

  • Behzadi S, Nonahal B, Royaee SJ, Asadi AA (2020) TiO2/SiO2/Fe3O4 magnetic nanoparticles synthesis and application in methyl orange UV photocatalytic removal. Water Sci Technol 82(11):2432–2445

    Article  CAS  Google Scholar 

  • Bickley RI, Stone FS (1973) Photoadsorption and photocatalysis at rutile surfaces: I. Photoadsorption of oxygen. J Catal 31(3):389–397

    Article  CAS  Google Scholar 

  • Borges ME, Alvarez-Galván MC, Esparza P, Medina E, Martín-Zarza P, Fierro JLG (2008) Ti-containing volcanic ash as photocatalyst for degradation of phenol. Energy Environ Sci 1(3):364–369

    Article  CAS  Google Scholar 

  • Bozetine H et al (2021) Facile and green synthesis of a ZnO/CQDs/AgNPs ternary heterostructure photocatalyst: study of the methylene blue dye photodegradation. Bull Mater Sci 44(1):1–12

    Article  CAS  Google Scholar 

  • Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1-2):33–177

    Article  CAS  Google Scholar 

  • Chandra MR et al (2015) An enhanced visible light active rutile titania–copper/polythiophene nanohybrid material for the degradation of rhodamine B dye. Mater Sci Semicond Process 30:672–681

    Article  CAS  Google Scholar 

  • Chatterjee A, Jana AK, Basu JK (2020) A novel synthesis of MIL-53 (Al)@ SiO2: an integrated photocatalyst adsorbent to remove bisphenol A from wastewater. New J Chem 44(43):18892–18905

    Article  CAS  Google Scholar 

  • Chen H, Zhao L, Xiang Y, He Y, Song G, Wang X, Liang F (2016) A novel Zn–TiO2/C@ SiO2 nanoporous material on rice husk for photocatalytic applications under visible light. Desalin Water Treat 57(21):9660–9670

    Article  CAS  Google Scholar 

  • Cheng J, Shen Y, Chen K, Wang X, Guo Y, Zhou X, Bai R (2018) Flower-like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation. Chin J Catal 39(4):810–820

    Article  CAS  Google Scholar 

  • Chinh NT et al (2017) Using fly ash treated by NaOH and H2SO4 solutions for Hg2+ and Cd2+ ion adsorption. Vietnam J Chem 55(2):196

    Google Scholar 

  • Coronado JM et al (2013) Design of advanced photocatalytic materials for energy and environmental applications. Springer, London

  • Cui X et al (2014) Layer-by-layer assembly and photocatalytic activity of titania nanosheets on coal fly ash microspheres. Int J Photoenergy 2014:823078

  • Dagar A, Narula AK (2018) Visible-light induced photodegradation of organic contaminants in water using Fe3O4 nanoparticles modified polypyrrole/fly ash cenosphere composite. Russ J Phys Chem A 92(13):2853–2860

    Article  Google Scholar 

  • Deng J, Xue R, Huang C, Yang J, Li L, Yang L, Fan X (2021) Preparation of Z-scheme Ag/AgBr/BiOBr composite photocatalyst for effective removal of organic pollutants. Chemical Physics 548:111228

  • El Mragui A, et al. (2019)“Preparation, characterization, and photocatalytic activity under UV and visible light of Co, Mn, and Ni mono-doped and (P, Mo) and (P, W) co-doped TiO2 nanoparticles: a comparative study.” Environ Sci Pollut Res 1-16.

  • Esparza P, Borges ME, Díaz L, Alvarez-Galván MC, Fierro JLG (2010) Photodegradation of dye pollutants using new nanostructured titania supported on volcanic ashes. Appl Catal A Gen 388(1-2):7–14

    Article  CAS  Google Scholar 

  • Fatimah I, Said A, Hasanah UA (2015) Preparation of TiO2-SiO2 using rice husk ash as silica source and the kinetics study as photocatalyst in methyl violet decolorization. Bull Chem Reaction Eng Catal 10(1):43–49

    CAS  Google Scholar 

  • Filimonov VN (1964)“Photocatalytic oxidation of gaseous isopropanol on ZnO and TiO2.” Doklady Akademii Nauk. Russian Acad Sci 154(4).

  • Fu J, Tian Y, Chang B, Xi F, Dong X (2013) Facile fabrication of N-doped TiO2 nanocatalyst with superior performance under visible light irradiation. J Solid State Chem 199:280–286

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  Google Scholar 

  • Gadore V, Ahmaruzzaman M (2021) Tailored fly ash materials: a recent progress of their properties and applications for remediation of organic and inorganic contaminants from water. J Water Process Eng 41:101910

    Article  Google Scholar 

  • Gilja V, Katančić Z, Krehula LK, Mandić V, Hrnjak-Murgić Z (2019) Efficiency of TiO2 catalyst supported by modified waste fly ash during photodegradation of RR45 dye. Sci Eng Compos Mater 26(1):292–300

    Article  CAS  Google Scholar 

  • Giribabu PVS, Swaminathan G (2016) Synergetic degradation of reactive dye Acid Red 1 by cobalt-doped lignite fly ash. Desalin Water Treat 57(36):16955–16962

    CAS  Google Scholar 

  • Goodeve CF, Kitchener JA (1938) The mechanism of photosensitization by solids. Trans Faraday Soc 34:902–908

    Article  CAS  Google Scholar 

  • Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-an overview. Environ Sci Pollut Res 20(5):2828–2843

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012) Photocatalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng C 32(1):12–17

    Article  CAS  Google Scholar 

  • Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20(1):1–18

    Article  Google Scholar 

  • Hassan SA, El-Salamony RA (2014) Photocatalytic disc-shaped composite systems for removal of hazardous dyes in aqueous solutions. Can Chem Trans 2:57–71

    Google Scholar 

  • Heng ZW, et al. (2020)“Photocatalytic degradation of methylene blue under visible light using carbon dot/titanium dioxide nanohybrid.” IOP Conference Series: Materials Science and Engineering. 991. No. 1. IOP Publishing.

  • Hieu VQ et al (2021) Photocatalytic degradation of methyl orange dye by Ti3C2–TiO2 heterojunction under solar light. Chemosphere 276:130154

    Article  CAS  Google Scholar 

  • Hormadaly J, and Prudenziati M. (2012) “Materials for printed films.” Printed Films. Woodhead Publishing, 30-62.

  • Huo P et al (2010a) Floating photocatalysts of fly-ash cenospheres supported AgCl/TiO2 films with enhanced rhodamine B photodecomposition activity. Desalination 256(1-3):196–200

    Article  CAS  Google Scholar 

  • Huo P et al (2010b) H2O2 modified surface of TiO2/fly-ash cenospheres and enhanced photocatalytic activity on methylene blue. Desalination 263(1-3):258–263

    Article  CAS  Google Scholar 

  • Hussain SM et al (2021) Emerging aspects of photo-catalysts (TiO2 & ZnO) doped zeolites and advanced oxidation processes for degradation of azo dyes: a review. Curr Anal Chem 17(1):82–97

    Article  CAS  Google Scholar 

  • Inagaki M, Yang Y, Kang F (2012) Carbon nanofibers prepared via electrospinning. Adv Mater 24(19):2547–2566

    Article  CAS  Google Scholar 

  • Jana S et al (2021) Fabrication of a new heterostructure Au/Pt/SnO2: an excellent catalyst for fast reduction of para-nitrophenol and visible light assisted photodegradation of dyes. Mater Res Bull 141:111351

    Article  CAS  Google Scholar 

  • Jankowski J, Ward C, French D, Groves S (2006) Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems. Fuel 85 (2):243–256

  • Jiang Y, Sun L-D, Li N, Gao L, Chattopadhyay K (2020) Metal-doped ZnFe2O4 nanoparticles derived from Fe-bearing slag with enhanced visible-light photoactivity. Ceram Int 46(18):28828–28834

    Article  CAS  Google Scholar 

  • Kabir MH et al (2012) Preparation and characterization of rice husk ash (RHA)-TiO2/ZnO composites and its application in treating effluents from textile industries. Bangladesh Sci Ind Res 47(4):445–448

    Article  CAS  Google Scholar 

  • Kalpana K, Selvaraj V (2015) Photodegradation and antibacterial studies of ZnS enwrapped fly ash nanocomposite for multipurpose industrial applications. RSC Adv 5(59):47766–47777

    Article  CAS  Google Scholar 

  • Kanakaraju D et al (2020) Combined adsorption/photocatalytic dye removal by copper-titania-fly ash composite. Surf Interfaces 19:100534

    Article  CAS  Google Scholar 

  • Katsika E, Moutsatsou A, Karayannis V, Volioti M, Tsoukleris D (2018) Synthesis and characterization of lignite fly ash ceramic substrates coated with TiO2 slurry, and evaluation in environmental applications. J Aust Ceram Soc 54(4):711–719

    Article  CAS  Google Scholar 

  • Keidel E (1929) The fading of aniline dyes in the presence of titanium white. Farben-Zeitung 34:1242–1243

    CAS  Google Scholar 

  • Kemnitz E, Noack J (2015) The non-aqueous fluorolytic sol–gel synthesis of nanoscaled metal fluorides. Dalton Trans 44(45):19411–19431

    Article  CAS  Google Scholar 

  • Khanam S, Rout SK (2021) Decolourization of rhodamine B and methylene blue dyes in the presence of bismuth tungstates: a detailed investigation on the effect of grain size. Bull Mater Sci 44(1):1–7

    Article  CAS  Google Scholar 

  • Kim HJ, Kim CS (2014) Synthesis and characterization of zno/fly ash composite with highly photocatalytic activity using a hydrothermal process. Digest J Nanomater Biostruct 9:997–1006

    Google Scholar 

  • Kondarides DI, Daskalaki VM, Patsoura A, Verykios XE (2008) Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions. Catal Lett 122(1):26–32

    Article  CAS  Google Scholar 

  • Kuila A et al (2021) Novel Ag decorated, BiOCl surface doped AgVO3 nanobelt ternary composite with Z-scheme homojunction-heterojunction interface for high prolific photo switching, quantum efficiency and hole mediated photocatalysis. Appl Catal B Environ 293:120224

    Article  CAS  Google Scholar 

  • Lassoued A (2021) Synthesis and characterization of Zn-doped α-Fe2O3 nanoparticles with enhanced photocatalytic activities. J Mol Struct 1239:130489

    Article  CAS  Google Scholar 

  • Lataye DH, Mishra IM, Mall ID (2008) Pyridine sorption from aqueous solution by rice husk ash (RHA) and granular activated carbon (GAC): parametric, kinetic, equilibrium and thermodynamic aspects. J Hazard Mater 154(1-3):858–870

    Article  CAS  Google Scholar 

  • Li C, Wang B, Cui H, Zhai J, Li Q (2013) Preparation and characterization of buoyant nitrogen-doped TiO2 composites supported by fly ash cenospheres for photocatalytic applications. J Mater Sci Technol 29(9):835–840

    Article  CAS  Google Scholar 

  • Li S-q, Zhou P-j, Zhang W-s, Chen S, Peng H (2014) Effective photocatalytic decolorization of methylene blue utilizing ZnO/rectorite nanocomposite under simulated solar irradiation. J Alloys Compd 616:227–234

    Article  CAS  Google Scholar 

  • Li Y, Yang Q, Wang Z, Wang G, Zhang B, Zhang Q, Yang D (2018) Rapid fabrication of SnO2 nanoparticle photocatalyst: computational understanding and photocatalytic degradation of organic dye. Inorgan Chem Front 5(12):3005–3014

    Article  CAS  Google Scholar 

  • Li G et al (2021a) Synthesis scaly Ag-TiO2 loaded fly ash magnetic bead particles for treatment of xanthate wastewater. Colloids Surf A Physicochem Eng Asp 624:126795

    Article  CAS  Google Scholar 

  • Li S et al (2021b) The removal optimization of reactive red x-3b through UV photocatalysis based on the response surface methodology. Desalin Water Treat 215:237–249

    Article  CAS  Google Scholar 

  • Lin L, Huang M, Long L, Chen D (2014) Novel photocatalysts of fly ash cenospheres supported BiOBr hierarchical microspheres with high photocatalytic performance. J Alloys Compd 615:929–932

    Article  CAS  Google Scholar 

  • Lisachenko AA (2018) Study of self-sensitization of wide-gap oxides to visible light by intrinsic defects: from Terenin to the present days. J Photochem Photobiol A Chem 354:47–60

    Article  CAS  Google Scholar 

  • Lu Z et al (2013a) Performance of a novel TiO2 photocatalyst based on the magnetic floating fly-ash cenospheres for the purpose of treating waste by waste. Chem Eng J 225, 34:–42

  • Lu Z et al (2013b) Performance of molecularly imprinted photocatalysts based on fly-ash cenospheres for selective photodegradation of single and ternary antibiotics solution. J Mol Catal A Chem 378:91–98

    Article  CAS  Google Scholar 

  • Lv K et al (2021) Enhancement of visible light photocatalytic activity of BiVO4 by polypyrrole modification. J Alloys Compd 872:159597

    Article  CAS  Google Scholar 

  • Malwal D, Gopinath P (2016) Enhanced photocatalytic activity of hierarchical three dimensional metal oxide@CuO nanostructures towards the degradation of Congo red dye under solar radiation. Catal Sci Technol 6(12):4458–4472

    Article  CAS  Google Scholar 

  • Mangalam J, Kumar M, Sharma M, Joshi M (2019) High adsorptivity and visible light assisted photocatalytic activity of silver/reduced graphene oxide (Ag/rGO) nanocomposite for wastewater treatment. Nano-Struct Nano-Objects 17:58–66

    Article  CAS  Google Scholar 

  • Menon SG, Kulkarni SD, Choudhari KS (2016) Diffusion-controlled growth of CuAl2O4 nanoparticles: effect of sintering and photodegradation of methyl orange. J Exp Nanosci 11(15):1227–1241

    Article  CAS  Google Scholar 

  • Mohammadi N, Khani H, Gupta VK, Amereh E, Agarwal S (2011) Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. J Colloid Interface Sci 362(2):457–462

    Article  CAS  Google Scholar 

  • Mosleh S et al (2016a) BiPO 4/Bi 2 S 3-HKUST-1-MOF as a novel blue light-driven photocatalyst for simultaneous degradation of toluidine blue and auramine-O dyes in a new rotating packed bed reactor: optimization and comparison to a conventional reactor. RSC Adv 6(68):63667–63680

    Article  CAS  Google Scholar 

  • Mosleh S et al (2016b) Photocatalytic degradation of binary mixture of toxic dyes by HKUST-1 MOF and HKUST-1-SBA-15 in a rotating packed bed reactor under blue LED illumination: central composite design optimization. RSC Adv 6(21):17204–17214

    Article  CAS  Google Scholar 

  • Mosleh S, Rahimi MR, Ghaedi M, Dashtian K, Hajati S (2018) Sonochemical-assisted synthesis of CuO/Cu2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization. Ultrason Sonochem 40:601–610

    Article  CAS  Google Scholar 

  • Mpelane A et al (2020) Application of novel C-TiO2-CFA/PAN photocatalytic membranes in the removal of textile dyes in wastewater. Catalysts 10(8):909

    Article  CAS  Google Scholar 

  • Mushtaq F, Zahid M, Mansha A, Bhatti IA, Mustafa G, Nasir S, Yaseen M (2020) MnFe2O4/coal fly ash nanocomposite: a novel sunlight-active magnetic photocatalyst for dye degradation. Int J Environ Sci Technol 17:4233–4248

    Article  CAS  Google Scholar 

  • Nadeem N, et al. (2021) “Improved photocatalytic degradation of dye using coal fly ash-based zinc ferrite (CFA/ZnFe2O4) composite.” Int J Environ Sci Technol 1-16.

  • Neelavannan MG, Ahmed Basha C (2008) Electrochemical-assisted photocatalytic degradation of textile washwater. Sep Purif Technol 61(2):168–174

    Article  CAS  Google Scholar 

  • Nourmoradi H, Zabihollahi S, Pourzamani HR (2016) Removal of a common textile dye, navy blue (NB), from aqueous solutions by combined process of coagulation–flocculation followed by adsorption. Desalin Water Treat 57(11):5200–5211

    Article  CAS  Google Scholar 

  • Nozik AJ (1977) Photochemical diodes. Appl Phys Lett 30(11):567–569

    Article  CAS  Google Scholar 

  • Ökte AN, Karamanis D (2013) A novel photoresponsive ZnO-flyash nanocomposite for environmental and energy applications. Appl Catal B Environ 142:538–552

    Article  CAS  Google Scholar 

  • Ökte AN, Karamanis D, Tuncel D (2014) Dual functionality of TiO2-flyash nanocomposites: water vapor adsorption and photocatalysis. Catal Today 230:205–213

    Article  CAS  Google Scholar 

  • Pant B, Ojha GP, Kim H-Y, Park M, Park S-J (2019) Fly-ash-incorporated electrospun zinc oxide nanofibers: potential material for environmental remediation. Environ Pollut 245:163–172

    Article  CAS  Google Scholar 

  • Peng X, Luan Z, Ding J, di Z, Li Y, Tian B (2005) Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater Lett 59(4):399–403

    Article  CAS  Google Scholar 

  • Prashantha Kumar TKM, Ashok Kumar SK (2019) Visible-light-induced degradation of rhodamine B by nanosized Ag2S–ZnS loaded on cellulose. Photochem Photobiol Sci 18(1):148–154

    Article  Google Scholar 

  • Puri S, et al. (2021)“Degradation of pharmaceutical drug paracetamol via UV irradiation using Fe-TiO2 composite photocatalyst: statistical analysis and parametric optimization.” Environ Sci Pollut Res 1-15.

  • Qadir SU et al (2019) Fly-ash pollution modulates growth, biochemical attributes, antioxidant activity and gene expression in Pithecellobium dulce (Roxb) benth. Plants 8(12):528

    Article  CAS  Google Scholar 

  • Qadir SU, et al. (2020)“Foliar concentrations of selected elements, assessment of oxidative stress markers and role of antioxidant defense system is associated with fly ash stress tolerance in Withania somnifera.” J Plant Growth Regul. 1-16.

  • Ramírez-Franco JH, Galeano L-A, Vicente M-A (2019) Fly ash as photo-Fenton catalyst for the degradation of amoxicillin. J Environ Chem Eng 7(5):103274

    Article  CAS  Google Scholar 

  • Rao BG, Mukherjee D, and Reddy BM. (2017)“Novel approaches for preparation of nanoparticles.” Nanostruct Novel Ther. Elsevier, 1-36.

  • Ren C, Yang B, Wu M, Xu J, Fu Z, lv Y, Guo T, Zhao Y, Zhu C (2010) Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. J Hazard Mater 182(1-3):123–129

    Article  CAS  Google Scholar 

  • Rhaman MM et al (2020) Visible-light responsive novel WO3/TiO2 and Au loaded WO3/TiO2 nanocomposite and wastewater remediation: Mechanistic inside and photocatalysis pathway. J Water Process Eng 36:101256

    Article  Google Scholar 

  • Rufai Y, Chandren S, Basar N (2020) Influence of solvents’ polarity on the physicochemical properties and photocatalytic activity of titania synthesized using Deinbollia pinnata leaves. Front Chem 8:1144

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2014) Processing methods, characteristics and adsorption behavior of tire derived carbons: a review. Adv Colloid Interf Sci 211:93–101

    Article  CAS  Google Scholar 

  • Samran B, Chaiwichian S (2019) Highly enhanced photoactivity of BiFeO3/Bi2WO6 composite films under visible light irradiation. Phys B Condens Matter 575:411683

    Article  CAS  Google Scholar 

  • Sangami G, Dharmaraj N (2012) UV–visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin (IV) oxide nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 97:847–852

    Article  CAS  Google Scholar 

  • Saravanan R, Gracia F, Stephen A (2017) c. In: Nanocomposites for visible light-induced photocatalysis. Springer, Cham, pp 19–40

  • Saud PS, Pant B, Park M, Chae S-H, Park S-J, EI-Newehy M, al-Deyab SS, Kim H-Y (2015) Preparation and photocatalytic activity of fly ash incorporated TiO2 nanofibers for effective removal of organic pollutants. Ceram Int 41(1):1771–1777

    Article  CAS  Google Scholar 

  • Schrauzer GN (2011) Photoreduction of nitrogen on TiO2 and TiO2-containing minerals. In: Energy Efficiency and Renewable Energy Through Nanotechnology. Springer, London, pp 601–623

  • Setthaya N et al (2017) TiO2-zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye. Powder Technol 313:417–426

    Article  CAS  Google Scholar 

  • Shaban M, Abukhadra MR, Hamd A, Amin RR, Abdel Khalek A (2017) Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application. J Environ Manag 204:189–199

    Article  CAS  Google Scholar 

  • Sheng F, Zhu X, Wang W, Bai H, Liu J, Wang P, Zhang R, Han L, Mu J (2014) Synthesis of novel polyoxometalate K6ZrW11O39Sn·12H2O and photocatalytic degradation aqueous azo dye solutions with solar irradiation. J Mol Catal A Chem 393:232–239

    Article  CAS  Google Scholar 

  • Shubha JP, Prathibha BS, Jayalakshmi N (2020) Curd mediated facile synthesis of ZnO/Ag/NiO heterostructures and visible light assisted photodegradation of methylene blue. Asian J Chem 32:3203–3208

    Article  CAS  Google Scholar 

  • Singh R, Dutta S (2019) The role of pH and nitrate concentration in the wet chemical growth of nano-rods shaped ZnO photocatalyst. Nano-Struc Nano-Objects 18:100250

    Article  CAS  Google Scholar 

  • Soltani RDC, Khataee AR, Mashayekhi M (2016) Photocatalytic degradation of a textile dye in aqueous phase over ZnO nanoparticles embedded in biosilica nanobiostructure. Desalin Water Treat 57(29):13494–13504

    Article  CAS  Google Scholar 

  • Song J, Wang X, Bu Y, Wang X, Zhang J, Huang J, Ma RR, Zhao J (2017) Photocatalytic enhancement of floating photocatalyst: layer-by-layer hybrid carbonized chitosan and Fe-N-codoped TiO2 on fly ash cenospheres. Appl Surf Sci 391:236–250

    Article  CAS  Google Scholar 

  • Subash B, Krishnakumar B, Sreedhar B, Swaminathan M, Shanthi M (2013) Highly active WO3–Ag–ZnO photocatalyst driven by day light illumination. Superlattice Microst 54:155–171

    Article  CAS  Google Scholar 

  • Sudha, G., and E. Subramanian. “Synthesis, characterization and photocatalytic study of cerium oxide/zeolite-NaX catalyst with brilliant green dye degradation.” J Adv Chem Sci (2015), 1(3): 117-120.

  • Sudha G, Subramanian E, Murugan C (2015) Development of iron oxide/zeo-NaX nano photocatalyst from coal fly ash and its activity assessment by methylene blue dye degradation. Int Res J Nat Appl Sci 2(2):114–128

    Google Scholar 

  • Sun YX, and Zhang J. (2013) “Photocatalytic degradation of methyl orange and phenol by BiVO4-loaded fly ash cenospheres (FACs) composite.” Adv Mater Res 821. Trans Tech Publications Ltd.

  • Szkoda M et al (2020) An aqueous exfoliation of WO3 as a route for counterions fabrication—improved photocatalytic and capacitive properties of polyaniline/WO3 composite. Materials 13(24):5781

    Article  CAS  Google Scholar 

  • Taourati R, Khaddor M, El Kasmi A (2019) Stable ZnO nanocatalysts with high photocatalytic activity for textile dye treatment. Nano-Struct Nano-Objects 18:100303

    Article  CAS  Google Scholar 

  • Terenin AN (1955) The desorption of adsorbed gases from metals and semiconductors, and their adsorption under the influence of light. Probl Kinet Katal 8:17–33

    CAS  Google Scholar 

  • Thejaswini TVL, Prabhakaran D, Maheswari MA (2016) Soft synthesis of Bi doped and Bi–N co-doped TiO 2 nanocomposites: a comprehensive mechanistic approach towards visible light induced ultra-fast photocatalytic degradation of fabric dye pollutant. J Environ Chem Eng 4:1308–1321

    Article  CAS  Google Scholar 

  • Udom I, Ram MK, Stefanakos EK, Hepp AF, Goswami DY (2013) One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Mater Sci Semicond Process 16(6):2070–2083

    Article  CAS  Google Scholar 

  • Vinu R, Madras G (2011) Photocatalytic degradation of water pollutants using nano-TiO 2. Energy efficiency and renewable energy through nanotechnology. Springer, London, pp 625–677

  • Visa M, Duta A (2013) Methyl-orange and cadmium simultaneous removal using fly ash and photo-Fenton systems. J Hazard Mater 244:773–779

  • Visa M, Andronic L, Duta A (2015) Fly ash-TiO2 nanocomposite material for multi-pollutants wastewater treatment. J Environ Manag 150:336–343

  • Wang F, Liu X (2019) 1.18 Rare-earth doped upconversion nanophosphors. Compr Nanosci Nanotechnol 2019:359

    Google Scholar 

  • Wang B, Li Q, Wang W, Li Y, Zhai J (2011) Preparation and characterization of Fe3+-doped TiO2 on fly ash cenospheres for photocatalytic application. Appl Surf Sci 257(8):3473–3479

    Article  CAS  Google Scholar 

  • Wang B, Yang Z, An H, Zhai J, Li Q, Cui H (2015) Photocatalytic activity of Pt–TiO2 films supported on hydroxylated fly ash cenospheres under visible light. Appl Surf Sci 324:817–824

    Article  CAS  Google Scholar 

  • Wang Y, et al. (2021).“Metal organic framework-derived C-doped ZnO/TiO2 nanocomposite catalysts for enhanced photodegradation of rhodamine B.” J Colloid Interface Sci

  • Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491

    Article  CAS  Google Scholar 

  • Yadav HM, Kim J-S, Pawar SH (2016) Developments in photocatalytic antibacterial activity of nano TiO2: a review, Korean. J Chem Eng 33:1989–1998

    CAS  Google Scholar 

  • Yang L et al (2017) The influence of zeolites fly ash bead/TiO2 composite material surface morphologies on their adsorption and photocatalytic performance. Appl Surf Sci 392:687–696

    Article  CAS  Google Scholar 

  • Zhang J. (2014) “Preparation of novel Pt–BiVO4/fly ash cenospheres composites with high photocatalytic performance.” Adva Mater Res. 1010. Trans Tech Publications Ltd.

  • Zhang X, and Cresswell M. (2016) Inorganic controlled release technology: materials and concepts for advanced drug formulation. Butterworth-Heinemann.

  • Zhang Y, Liu L (2013) Fly ash-based geopolymer as a novel photocatalyst for degradation of dye from wastewater. Particuology 11(3):353–358

    Article  CAS  Google Scholar 

  • Zhang J, Cui H, Wang B, Li C, Zhai J, Li Q (2013) Fly ash cenospheres supported visible-light-driven BiVO4 photocatalyst: synthesis, characterization and photocatalytic application. Chem Eng J 223:737–746

    Article  CAS  Google Scholar 

  • Zhang J et al (2014) Synthesis of CeO2/fly ash cenospheres composites as novel photocatalysts by modified pyrolysis process. J Rare Earths 32(12):1120–1125

    Article  CAS  Google Scholar 

  • Zhang YJ, He PY, Yang YM, Kang L (2017) A new graphene bottom ash geopolymeric composite for photocatalytic H2 production and degradation of dyeing wastewater. Int J Hydrog Energy 42(32):20589–20598

    Article  CAS  Google Scholar 

  • Zhang YJ, He PY, Zhang YX, Chen H (2018) A novel electroconductive graphene/fly ash-based geopolymer composite and its photocatalytic performance. Chem Eng J 334:2459–2466

    Article  CAS  Google Scholar 

  • Zhao W, Liu Y, Wei Z, Yang S, He H, Sun C (2016) Fabrication of a novel p–n heterojunction photocatalyst n-BiVO4@ p-MoS2 with core–shell structure and its excellent visible-light photocatalytic reduction and oxidation activities. Appl Catal B Environ 185:242–252

    Article  CAS  Google Scholar 

  • Zhao Z, Lei Y, Liu W, Fan J, Xue D, Xue Y, Yin S (2017) Fly ash cenospheres as multifunctional supports of g-C3N4/N-TiO2 with enhanced visible-light photocatalytic activity and adsorption. Adv Powder Technol 28(12):3233–3240

    Article  CAS  Google Scholar 

  • Zheng J et al (2021) Hydrothermally synthesized Ti/Zr bimetallic MOFs derived N self-doped TiO2/ZrO2 composite catalysts with enhanced photocatalytic degradation of methylene blue. Colloids Surf A Physicochem Eng Asp 623:126629

    Article  CAS  Google Scholar 

  • Zhu S, Wang D (2017) Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv Energy Mater 7(23):1700841

    Article  CAS  Google Scholar 

  • Zhu S, Liu J, Ge X, Guo X, Wang H (2016) Wu, Synthesis of Fe2O3–TiO2/fly-ashcenosphere composite and its mechanism of photocatalytic oxidation under visible light. Res Chem Intermed 42:3637–3654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, National Institute of Technology Silchar, for his help and continuous support for the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Vishal Gadore and Md. Ahmaruzzaman have equally contributed in conducting the literature review and compilation of the manuscript.

Corresponding author

Correspondence to Md. Ahmaruzzaman.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Sami Rtimi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadore, V., Ahmaruzzaman, M. Fly ash–based nanocomposites: a potential material for effective photocatalytic degradation/elimination of emerging organic pollutants from aqueous stream. Environ Sci Pollut Res 28, 46910–46933 (2021). https://doi.org/10.1007/s11356-021-15251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15251-0

Keywords

Navigation