Skip to main content
Log in

Emerging applications of waste fly ash for remediation of environmental contaminants: a high-value and sustainable approach towards utilization of waste materials

  • Critical Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Fly ash is a greyish-black powdery substance easily available and produced as a side product of burning any organic substance. A huge amount of fly ash is generated worldwide, and today’s world faces a severe problem of its disposal. Owing to its various applications, researchers began utilizing fly ash as a catalyst to solve environmental problems. Due to the presence of metal oxides in fly ash, it acts as a good adsorbent. It can be used to support semiconductor photocatalysts in degrading pollutants from wastewater under light irradiation. The current review discusses the preparation methods of fly ash-based materials such as impregnation, wet chemical synthesis, electrospinning, modified meta-organic decomposition, impregnation, sol–gel, layer-by-layer assembly, precipitation/co-precipitation and hydrothermal/solvothermal technique. The application of fly ash and related materials for photocatalytic degradation of organic pollutants and the factors that affect the photodegradation, mechanism, kinetics of photodegradation, and approaches to make photocatalytic degradation more efficient have been reviewed. The techniques used to characterize fly ash nanocomposites, like powdered X-ray diffraction technique, Fourier transform infrared spectroscopy, and scanning electron microscopy, have been discussed to understand the topic better. Furthermore, the applicability of the fly ash and modified fly ash for the sorption of volatile organics, SOx, NOx, and mercury from flue gases has also been summarized. Moreover, the review also provides a scope for further research in the field of photodegradation and air remediation using fly ash to develop robust and low-cost materials for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

(Reproduced with permission from Elsevier) [103]

Fig. 8

(Reproduced with permission from Elsevier) [104]

Fig. 9
Fig. 10

(Reproduced with permission from Elsevier) [174]

Fig. 11

(Reproduced with permission from Elsevier) [179]

Fig. 12

(Reproduced with permission from Elsevier) [192]

Fig. 13

(Reproduced with permission from Elsevier) [179]

Fig. 14

(Reproduced with permission from Elsevier) [224]

Similar content being viewed by others

Data availability

All of the materials investigated during the study are included in this published article, along with the data that supported the findings.

References

  1. Gadore V, Ahmaruzzaman M (2021) Tailored fly ash materials: a recent progress of their properties and applications for remediation of organic and inorganic contaminants from water. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101910

    Article  Google Scholar 

  2. An C, Yang S, Huang G et al (2016) Removal of sulfonated humic acid from aqueous phase by modified coal fly ash waste: equilibrium and kinetic adsorption studies. Fuel 165:264–271. https://doi.org/10.1016/J.FUEL.2015.10.069

    Article  CAS  Google Scholar 

  3. Aigbe UO, Ukhurebor KE, Onyancha RB et al (2021) Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review. J Mater Res Technol 14:2751–2774. https://doi.org/10.1016/J.JMRT.2021.07.140

    Article  CAS  Google Scholar 

  4. Mishra SR, Gadore V, Verma R et al (2023) In2S3 incorporated into CO32−@Ni/Fe/Zn trimetallic LDH as a bi-functional novel nanomaterial for enzymatic urea sensing and removal of sulfur-containing pharmaceutical from aqueous streams. Chem Eng J. https://doi.org/10.1016/J.CEJ.2023.146207

    Article  Google Scholar 

  5. Ahmaruzzaman M, Mishra SR (2021) Photocatalytic performance of g-C3N4 based nanocomposites for effective degradation/removal of dyes from water and wastewater. Mater Res Bull 143:111417. https://doi.org/10.1016/J.MATERRESBULL.2021.111417

    Article  CAS  Google Scholar 

  6. Mishra SR, Ahmaruzzaman M (2022) Tin oxide based nanostructured materials: synthesis and potential applications. Nanoscale 14:1566–1605. https://doi.org/10.1039/D1NR07040A

    Article  CAS  PubMed  Google Scholar 

  7. Mishra SR, Ahmaruzzaman M (2021) Cerium oxide and its nanocomposites: structure, synthesis, and wastewater treatment applications. Mater Today Commun 28:102562. https://doi.org/10.1016/J.MTCOMM.2021.102562

    Article  CAS  Google Scholar 

  8. Anastopoulos I, Pashalidis I, Orfanos AG et al (2020) Removal of caffeine, nicotine and amoxicillin from (waste)waters by various adsorbents: a review. J Environ Manage 261:110236. https://doi.org/10.1016/J.JENVMAN.2020.110236

    Article  CAS  PubMed  Google Scholar 

  9. Kumar V, Saharan P, Sharma AK et al (2020) Silver doped manganese oxide-carbon nanotube nanocomposite for enhanced dye-sequestration: Isotherm studies and RSM modelling approach. Ceram Int 46:10309–10319. https://doi.org/10.1016/J.CERAMINT.2020.01.025

    Article  CAS  Google Scholar 

  10. Tong Y, Gao J, Yue T et al (2023) Distribution, chemical fractionation, and potential environmental risks of Hg, Cr, Cd, Pb, and As in wastes from ultra-low emission coal-fired industrial boilers in China. J Hazard Mater 446:130606. https://doi.org/10.1016/J.JHAZMAT.2022.130606

    Article  CAS  PubMed  Google Scholar 

  11. Bhattacharyya A, Kerketta S, Kumar MS, Rajanikanth BS (2014) Discharge plasma cascaded with fly ash for removal of NOx in biodiesel exhaust: a feasibility study. Int J Plasma Environ Sci Technol 8:98–102

    Google Scholar 

  12. Izquierdo MT, Rubio B (2008) Carbon-enriched coal fly ash as a precursor of activated carbons for SO2 removal. J Hazard Mater 155:199–205. https://doi.org/10.1016/J.JHAZMAT.2007.11.047

    Article  CAS  PubMed  Google Scholar 

  13. Boycheva S, Szegedi Á, Lázár K et al (2023) Advanced high-iron coal fly ash zeolites for low-carbon emission catalytic combustion of VOCs. Catal Today 418:114109. https://doi.org/10.1016/J.CATTOD.2023.114109

    Article  CAS  Google Scholar 

  14. Mohan D, Singh KP, Singh G, Kumar K (2002) Removal of dyes from wastewater using flyash, a low-cost adsorbent. Ind Eng Chem Res 41:3688–3695. https://doi.org/10.1021/IE010667

    Article  CAS  Google Scholar 

  15. Agarwal S, Rani A (2017) Adsorption of resorcinol from aqueous solution onto CTAB/NaOH/flyash composites: equilibrium, kinetics and thermodynamics. J Environ Chem Eng 5:526–538. https://doi.org/10.1016/J.JECE.2016.11.035

    Article  CAS  Google Scholar 

  16. Chinh NT, Mai TT, Thi N et al (2017) Using fly ash treated by NaOH and H2SO4 solutions for Hg2+ and Cd2+ ion adsorption. Vietnam J Chem 55:196. https://doi.org/10.15625/2525-2321.2017-00443

    Article  CAS  Google Scholar 

  17. Xiyili H, Çetintaş S, Bingöl D (2017) Removal of some heavy metals onto mechanically activated fly ash: modeling approach for optimization, isotherms, kinetics and thermodynamics. Process Saf Environ Prot 109:288–300. https://doi.org/10.1016/J.PSEP.2017.04.012

    Article  CAS  Google Scholar 

  18. Drunka R, Grabis J, Krumina A (2016) Microwave assisted synthesis, modification with platinum and photocatalytical properties of TiO2 nanofibers. Medziagotyra 22:138–141. https://doi.org/10.5755/J01.MS.22.1.7353

    Article  Google Scholar 

  19. Yadav HM, Kim JS (2016) Pawar SH (2016) Developments in photocatalytic antibacterial activity of nano TiO2: a review. Korean J Chem Eng 337(33):1989–1998. https://doi.org/10.1007/S11814-016-0118-2

    Article  Google Scholar 

  20. Lv J, Sheng T, Su L et al (2013) N, S co-doped-TiO2/fly ash beads composite material and visible light photocatalytic activity. Appl Surf Sci 284:229–234. https://doi.org/10.1016/J.APSUSC.2013.07.086

    Article  ADS  CAS  Google Scholar 

  21. Udom I, Ram MK, Stefanakos EK et al (2013) One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Mater Sci Semicond Process 16:2070–2083. https://doi.org/10.1016/J.MSSP.2013.06.017

    Article  CAS  Google Scholar 

  22. Zhang J, Cui H, Wang B et al (2013) Fly ash cenospheres supported visible-light-driven BiVO4 photocatalyst: synthesis, characterization and photocatalytic application. Chem Eng J 223:737–746. https://doi.org/10.1016/J.CEJ.2012.12.065

    Article  CAS  Google Scholar 

  23. Zhang J (2014) Preparation of Novel Pt–BiVO4/Fly ash cenospheres composites with high photocatalytic performance. Adv Mater Res 1010–1012:216–219. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.1010-1012.216

    Article  Google Scholar 

  24. Gadore V, Mishra SR, Ahmaruzzaman M (2024) Bandgap engineering approach for synthesising photoactive novel Ag/HAp/SnS2 for removing toxic anti-fungal pharmaceutical from aqueous environment. J Hazard Mater 461:132458. https://doi.org/10.1016/J.JHAZMAT.2023.132458

    Article  CAS  PubMed  Google Scholar 

  25. Mishra SR, Gadore V, Ahmaruzzaman M (2023) Insights into persulfate-activated photodegradation of tinidazole and photoreduction of hexavalent chromium through β-In2S3 anchored on Ag-doped fish scale-derived HAp composite quantum dots. J Clean Prod. https://doi.org/10.1016/J.JCLEPRO.2023.139221

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mosleh S, Rahimi MR, Ghaedi M et al (2018) Sonochemical-assisted synthesis of CuO/Cu2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization. Ultrason Sonochem 40:601–610. https://doi.org/10.1016/J.ULTSONCH.2017.08.007

    Article  CAS  PubMed  Google Scholar 

  27. Hassan SA, El-Salamony RA (2014) Photocatalytic disc-shaped composite systems for removal of hazardous dyes in aqueous solutions establish a green direct routes for propylene epoxidation using multi-component molybdenum oxide catalysts view project catalytic study view project photocatalytic disc-shaped composite systems for removal of hazardous dyes in aqueous solutions. 2:1–56. https://doi.org/10.13179/canchemtrans.2014.02.01.0057

  28. Ahmaruzzaman M, Gadore V (2021) MoS2 based nanocomposites: an excellent material for energy and environmental applications. J Environ Chem Eng 9:105836. https://doi.org/10.1016/J.JECE.2021.105836

    Article  CAS  Google Scholar 

  29. Lum PT, Foo KY, Zakaria NA, Palaniandy P (2020) Ash based nanocomposites for photocatalytic degradation of textile dye pollutants: a review. Mater Chem Phys 241:122405. https://doi.org/10.1016/J.MATCHEMPHYS.2019.122405

    Article  CAS  Google Scholar 

  30. Son BT, Long NV, Nhat Hang NT (2021) Fly ash-, foundry sand-, clay-, and pumice-based metal oxide nanocomposites as green photocatalysts. RSC Adv 11:30805–30826. https://doi.org/10.1039/D1RA05647F

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chuaicham C, Inoue T, Balakumar V et al (2022) Visible light-driven ZnCr double layer oxide photocatalyst composites with fly ashes for the degradation of ciprofloxacin. J Environ Chem Eng 10:106970. https://doi.org/10.1016/J.JECE.2021.106970

    Article  CAS  Google Scholar 

  32. Nadeem N, Zahid M, Rehan ZA et al (2022) Improved photocatalytic degradation of dye using coal fly ash-based zinc ferrite (CFA/ZnFe2O4) composite. Int J Environ Sci Technol 19:3045–3060. https://doi.org/10.1007/S13762-021-03255-9/TABLES/2

    Article  CAS  Google Scholar 

  33. Nadeem N, Yaseen M, Rehan ZA et al (2022) Coal fly ash supported CoFe2O4 nanocomposites: synergetic Fenton-like and photocatalytic degradation of methylene blue. Environ Res 206:112280. https://doi.org/10.1016/J.ENVRES.2021.112280

    Article  CAS  PubMed  Google Scholar 

  34. Barman S, Chakraborty R (2021) Sustainable HMF synthesis from waste cooked rice water using fly-ash based Al2SiO5 supported nano-photocatalyst under halogen-ultrasound synergistic-energy: LCA and DFT based simulation. J Environ Chem Eng 9:106736. https://doi.org/10.1016/J.JECE.2021.106736

    Article  CAS  Google Scholar 

  35. Ishag A, Yue Y, Xiao J et al (2022) Recent advances on the adsorption and oxidation of mercury from coal-fired flue gas: a review. J Clean Prod 367:133111. https://doi.org/10.1016/J.JCLEPRO.2022.133111

    Article  CAS  Google Scholar 

  36. Vega-Mendoza MS, Luévano-Hipólito E, Torres-Martínez LM (2021) Design and fabrication of photocatalytic coatings with α/β-Bi2O3 and recycled-fly ash for environmental remediation and solar fuel generation. Ceram Int 47:26907–26918. https://doi.org/10.1016/J.CERAMINT.2021.06.100

    Article  CAS  Google Scholar 

  37. Ökte AN, Karamanis D (2013) A novel photoresponsive ZnO-flyash nanocomposite for environmental and energy applications. Appl Catal B Environ 142–143:538–552. https://doi.org/10.1016/J.APCATB.2013.05.045

    Article  Google Scholar 

  38. Kim HJ, Joshi MK, Pant HR et al (2015) One-pot hydrothermal synthesis of multifunctional Ag/ZnO/fly ash nanocomposite. Colloids Surfaces A Physicochem Eng Asp 469:256–262. https://doi.org/10.1016/J.COLSURFA.2015.01.032

    Article  CAS  Google Scholar 

  39. Fraga TJM, de Araújo CMB, da Motta Sobrinho MA, Ghislandi MG (2021) The role of multifunctional nanomaterials in the remediation of textile wastewaters. Sustain Technol Text Wastewater Treat. https://doi.org/10.1016/B978-0-323-85829-8.00001-8

    Article  Google Scholar 

  40. Adair JH, Suvaci E (2001) Submicron electroceramic powders by hydrothermal synthesis. Encycl Mater Sci Technol. https://doi.org/10.1016/B0-08-043152-6/01607-7

    Article  Google Scholar 

  41. Mushtaq F, Zahid M, Mansha A et al (2020) MnFe2O4/coal fly ash nanocomposite: a novel sunlight-active magnetic photocatalyst for dye degradation. Int J Environ Sci Technol 17:4233–4248. https://doi.org/10.1007/S13762-020-02777-Y/FIGURES/10

    Article  CAS  Google Scholar 

  42. Favier L, Harja M (2020) TiO2/Fly ash nanocomposite for photodegradation of organic pollutant. Handb Nanomater Nanocomposites Energy Environ Appl. https://doi.org/10.1007/978-3-030-11155-7_11-2

    Article  Google Scholar 

  43. Wang B, Yang Z, An H et al (2015) Photocatalytic activity of Pt–TiO2 films supported on hydroxylated fly ash cenospheres under visible light. Appl Surf Sci 324:817–824. https://doi.org/10.1016/J.APSUSC.2014.11.046

    Article  ADS  CAS  Google Scholar 

  44. Oleszczuk P, Pan B, Xing B (2009) Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes. Environ Sci Technol 43:9167–9173. https://doi.org/10.1021/ES901928Q/SUPPL_FILE/ES901928Q_SI_001.PDF

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Zhang X, Cresswell M (2015) Inorganic controlled release technology: materials and concepts for advanced drug formulation. Butterworth-Heinemann

    Google Scholar 

  46. Kemnitz E, Noack J (2015) The non-aqueous fluorolytic sol–gel synthesis of nanoscaled metal fluorides. Dalt Trans 44:19411–19431. https://doi.org/10.1039/C5DT00914F

    Article  CAS  Google Scholar 

  47. Rao BG, Mukherjee D, Reddy BM (2017) Novel approaches for preparation of nanoparticles. Nanostruct Nov Ther Synth Charact Appl. https://doi.org/10.1016/B978-0-323-46142-9.00001-3

    Article  Google Scholar 

  48. Wang B, Li Q, Wang W et al (2011) Preparation and characterization of Fe3+-doped TiO2 on fly ash cenospheres for photocatalytic application. Appl Surf Sci 257:3473–3479. https://doi.org/10.1016/J.APSUSC.2010.11.050

    Article  ADS  CAS  Google Scholar 

  49. Li G, Teng Q, Sun B et al (2021) Synthesis scaly Ag-TiO2 loaded fly ash magnetic bead particles for treatment of xanthate wastewater. Colloids Surfaces A Physicochem Eng Asp 624:126795. https://doi.org/10.1016/J.COLSURFA.2021.126795

    Article  CAS  Google Scholar 

  50. Chuaicham C, Inoue T, Balakumar V et al (2022) Fabrication of visible-light-active ZnCr mixed metal oxide/fly ash for photocatalytic activity toward pharmaceutical waste ciprofloxacin. J Ind Eng Chem 108:263–273. https://doi.org/10.1016/J.JIEC.2022.01.006

    Article  CAS  Google Scholar 

  51. Hadisantoso EP, Ayu ZD, Listiani P, Setiadji S (2021) Synthesis of ZnO/FA composite for methylene blue decolorization. IOP Conf Ser Mater Sci Eng 1098:062066. https://doi.org/10.1088/1757-899X/1098/6/062066

    Article  CAS  Google Scholar 

  52. Luévano-Hipólito E, Torres-Martínez LM, Cantú-Castro LVF (2019) Self-cleaning coatings based on fly ash and bismuth-photocatalysts: Bi2O3, Bi2O2CO3, BiOI, BiVO4, BiPO4. Constr Build Mater 220:206–213. https://doi.org/10.1016/J.CONBUILDMAT.2019.06.030

    Article  Google Scholar 

  53. Shaban M, Abukhadra MR, Hamd A et al (2017) Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application. J Environ Manage 204:189–199. https://doi.org/10.1016/J.JENVMAN.2017.08.048

    Article  CAS  PubMed  Google Scholar 

  54. An N, Ma Y, Liu J et al (2018) Enhanced visible-light photocatalytic oxidation capability of carbon-doped TiO2 via coupling with fly ash. Chin J Catal 39:1890–1900. https://doi.org/10.1016/S1872-2067(18)63152-3

    Article  CAS  Google Scholar 

  55. Ramakrishna S, Fujihara K, Teo WE et al (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50. https://doi.org/10.1016/S1369-7021(06)71389-X

    Article  CAS  Google Scholar 

  56. Saud PS, Pant B, Park M et al (2015) Preparation and photocatalytic activity of fly ash incorporated TiO2 nanofibers for effective removal of organic pollutants. Ceram Int 41:1771–1777. https://doi.org/10.1016/J.CERAMINT.2014.09.123

    Article  CAS  Google Scholar 

  57. Leontie L, Caraman M, Alexe M, Harnagea C (2002) Structural and optical characteristics of bismuth oxide thin films. Surf Sci 507–510:480–485. https://doi.org/10.1016/S0039-6028(02)01289-X

    Article  ADS  Google Scholar 

  58. Weidong H, Wei Q, Xiaohong W et al (2007) The photocatalytic properties of bismuth oxide films prepared through the sol–gel method. Thin Solid Films 515:5362–5365. https://doi.org/10.1016/J.TSF.2007.01.031

    Article  ADS  Google Scholar 

  59. Cui X, Shi J, Ye Z et al (2014) Layer-by-layer assembly and photocatalytic activity of titania nanosheets on coal fly ash microspheres. Int J Photoenergy. https://doi.org/10.1155/2014/823078

    Article  Google Scholar 

  60. Sietsma JRA, Jos van Dillen A, de Jongh PE, de Jong KP (2006) Application of ordered mesoporous materials as model supports to study catalyst preparation by impregnation and drying. Stud Surf Sci Catal 162:95–102. https://doi.org/10.1016/S0167-2991(06)80895-5

    Article  CAS  Google Scholar 

  61. Adam F, Appaturi JN, Thankappan R, Nawi MAM (2010) Silica–tin nanotubes prepared from rice husk ash by sol–gel method: characterization and its photocatalytic activity. Appl Surf Sci 257:811–816. https://doi.org/10.1016/J.APSUSC.2010.07.070

    Article  ADS  CAS  Google Scholar 

  62. Xu Y, Hu E, Xu D, Guo Q (2021) Activation of peroxymonosulfate by bimetallic CoMn oxides loaded on coal fly ash-derived SBA-15 for efficient degradation of Rhodamine B. Sep Purif Technol 274:119081. https://doi.org/10.1016/J.SEPPUR.2021.119081

    Article  CAS  Google Scholar 

  63. Yadav G, Yadav N, Gadore V et al (2023) Biogenic growth of egg shell–derived CaMn2O4 over tailored FLY ASH surface for synergistically photodegradation of ofloxacin: materialistic and chemical studies. Biomass Convers Biorefinery 1:1–18. https://doi.org/10.1007/S13399-023-04978-0/FIGURES/19

    Article  Google Scholar 

  64. Lin L, Huang M, Long L, Chen D (2014) Novel photocatalysts of fly ash cenospheres supported BiOBr hierarchical microspheres with high photocatalytic performance. J Alloys Compd 615:929–932. https://doi.org/10.1016/J.JALLCOM.2014.06.088

    Article  CAS  Google Scholar 

  65. Ahmed AE, Adam F (2007) Indium incorporated silica from rice husk and its catalytic activity. Microporous Mesoporous Mater 103:284–295. https://doi.org/10.1016/J.MICROMESO.2007.01.055

    Article  CAS  Google Scholar 

  66. Coronado JM, Fresno F, Hernández-Alonso MD, Portela R (2013) Design of advanced photocatalytic materials for energy and environmental applications. Springer

    Book  Google Scholar 

  67. Coronado JM (2013) A historical introduction to photocatalysis. Green Energy Technol 71:1–4. https://doi.org/10.1007/978-1-4471-5061-9_1/FIGURES/1

    Article  Google Scholar 

  68. Adam F, Appaturi JN, Khanam Z et al (2013) Utilization of tin and titanium incorporated rice husk silica nanocomposite as photocatalyst and adsorbent for the removal of methylene blue in aqueous medium. Appl Surf Sci 264:718–726. https://doi.org/10.1016/J.APSUSC.2012.10.106

    Article  ADS  CAS  Google Scholar 

  69. Chekuri RD, Tirukkovalluri SR (2017) Synthesis of cobalt doped titania nano material assisted by gemini surfactant: characterization and application in degradation of Acid Red under visible light irradiation. South Afr J Chem Eng 24:183–195. https://doi.org/10.1016/J.SAJCE.2017.10.001

    Article  Google Scholar 

  70. Kabir MH, Kabir MF, Nigar F et al (2012) Preparation and characterization of rice husk ash (RHA)-TiO2/ZnO composites and its application in treating effluents from textile industries. Bangladesh J Sci Ind Res 47:445–448. https://doi.org/10.3329/BJSIR.V47I4.14075

    Article  CAS  Google Scholar 

  71. Schrauzer GN (2011) Photoreduction of nitrogen on TiO2 and TiO2-containing minerals. Green Energy Technol 33:601–623. https://doi.org/10.1007/978-0-85729-638-2_18/TABLES/4

    Article  Google Scholar 

  72. Vinu R, Madras G (2011) Photocatalytic degradation of water pollutants using nano-TiO2. Green Energy Technol 33:625–677. https://doi.org/10.1007/978-0-85729-638-2_19/TABLES/8

    Article  Google Scholar 

  73. Xu N, Shi Z, Fan Y et al (1999) Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions. Ind Eng Chem Res 38:373–379. https://doi.org/10.1021/IE980378U/ASSET/IMAGES/LARGE/IE980378UF00011.JPEG

    Article  CAS  Google Scholar 

  74. Borges ME, Alvarez-Galván MC, Esparza P et al (2008) Ti-containing volcanic ash as photocatalyst for degradation of phenol. Energy Environ Sci 1:364–369. https://doi.org/10.1039/B802187M

    Article  CAS  Google Scholar 

  75. Naiya TK, Bhattacharya AK, Mandal S, Das SK (2009) The sorption of lead(II) ions on rice husk ash. J Hazard Mater 163:1254–1264. https://doi.org/10.1016/J.JHAZMAT.2008.07.119

    Article  CAS  PubMed  Google Scholar 

  76. Chandrasekhar S, Pramada PN, Praveen L (2005) Effect of organic acid treatment on the properties of rice husk silica. J Mater Sci 40:6535–6544. https://doi.org/10.1007/S10853-005-1816-Z/METRICS

    Article  ADS  CAS  Google Scholar 

  77. An D, Guo Y, Zou B et al (2011) A study on the consecutive preparation of silica powders and active carbon from rice husk ash. Biomass Bioenerg 35:1227–1234. https://doi.org/10.1016/J.BIOMBIOE.2010.12.014

    Article  CAS  Google Scholar 

  78. Lataye DH, Mishra IM, Mall ID (2008) Pyridine sorption from aqueous solution by rice husk ash (RHA) and granular activated carbon (GAC): parametric, kinetic, equilibrium and thermodynamic aspects. J Hazard Mater 154:858–870. https://doi.org/10.1016/J.JHAZMAT.2007.10.111

    Article  CAS  PubMed  Google Scholar 

  79. Fatimah I, Said A, Hasanah UA (2015) Preparation of TiO2-SiO2 using rice husk ash as silica source and the kinetics study as photocatalyst in methyl violet decolorization. Bull Chem React Eng Catal 10:43–49. https://doi.org/10.9767/BCREC.10.1.7218.43-49

    Article  CAS  Google Scholar 

  80. Wang S (2008) Application of solid ash based catalysts in heterogeneous catalysis. Environ Sci Technol 42:7055–7063. https://doi.org/10.1021/ES801312M/SUPPL_FILE/ES801312M_SI_001.PDF

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Kim HJ, Kim CS (2014) Synthesis and characterization of zno/fly ash composite with highly photocatalytic activity using a hydrothermal process. Dig J Nanomater Biostruct 9:997–1006

    Google Scholar 

  82. Esparza P, Borges ME, Díaz L et al (2010) Photodegradation of dye pollutants using new nanostructured titania supported on volcanic ashes. Appl Catal A Gen 388:7–14. https://doi.org/10.1016/J.APCATA.2010.07.058

    Article  CAS  Google Scholar 

  83. Wahyuni ET, Suherman S, Setyawati D et al (2020) Photocatalytic activity of TiO2/SiO2 prepared from silica contained in volcanic ash for ammonia removaL. Rasayan J Chem 13:574–584. https://doi.org/10.31788/RJC.2020.1315464

    Article  Google Scholar 

  84. Wei TY, Kuo CY, Hsu YJ et al (2008) Tin oxide nanocrystals embedded in silica aerogel: photoluminescence and photocatalysis. Microporous Mesoporous Mater 112:580–588. https://doi.org/10.1016/J.MICROMESO.2007.10.040

    Article  CAS  Google Scholar 

  85. Malwal D, Gopinath P (2016) Enhanced photocatalytic activity of hierarchical three dimensional metal oxide@CuO nanostructures towards the degradation of Congo red dye under solar radiation. Catal Sci Technol 6:4458–4472. https://doi.org/10.1039/C6CY00128A

    Article  CAS  Google Scholar 

  86. Chatti R, Rayalu SS, Dubey N et al (2007) Solar-based photoreduction of methyl orange using zeolite supported photocatalytic materials. Sol Energy Mater Sol Cells 91:180–190. https://doi.org/10.1016/J.SOLMAT.2006.08.009

    Article  CAS  Google Scholar 

  87. Nourmoradi H, Zabihollahi S, Pourzamani HR (2015) Removal of a common textile dye, navy blue (NB), from aqueous solutions by combined process of coagulation–flocculation followed by adsorption. New pub Balaban 57:5200–5211. https://doi.org/10.1080/19443994.2014.1003102

    Article  CAS  Google Scholar 

  88. Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20:1–18. https://doi.org/10.4491/eer.2015.018

    Article  Google Scholar 

  89. Yadav G, Mishra SR, Gadore V et al (2023) A smart and sustainable pathway for abatement of single and binary mixtures of dyes through magnetically retrievable Ca4Fe9O17 anchored on Biochar matrix. Sci Rep 13:1–21. https://doi.org/10.1038/s41598-023-40077-w

    Article  CAS  Google Scholar 

  90. Manganelli S, Benfenati E, Manganaro A et al (2016) New quantitative structure-activity relationship models improve predictability of ames mutagenicity for aromatic AZO compounds. Toxicol Sci 153:316–326. https://doi.org/10.1093/TOXSCI/KFW125

    Article  CAS  PubMed  Google Scholar 

  91. Gadore V, Mishra SR, Ahmaruzzaman M (2023) Facile green synthesis of SnS2 nanoparticles using Tulsi extract: insight into the optical and photocatalytic properties. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2023.2178912/SUPPL_FILE/GEAC_A_2178912_SM0330.PDF

    Article  Google Scholar 

  92. Mohammadi N, Khani H, Gupta VK et al (2011) Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. J Colloid Interface Sci 362:457–462. https://doi.org/10.1016/J.JCIS.2011.06.067

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Mishra SR, Gadore V, Ahmaruzzaman M (2023) Novel 3D sphere-like β-In2S3/Biochar nanoflowers for remediation of dyes in single and binary systems and interpretation using statistical physical modeling. Environ Nanotechnol Monit Manag 20:100807. https://doi.org/10.1016/j.enmm.2023.100807

    Article  CAS  Google Scholar 

  94. Ameta N, Sharma J, Sharma S et al (2012) Copper modified iron oxide as heterogeneous photo-Fenton reagent for the degradation of coomasie brilliant blue R-250. Indian J Chem -Section A 51:943–948

    Google Scholar 

  95. Subramanian E (2015) Development of iron oxide/zeo-nax nano photocatalyst from coal fly ash and its activity assessment by methylene blue dye degradation organic and Inorganic hybrid materials for photocatalytic applications view project utilization of waste materials view pr. Int Res J Nat Appl Sci 2:114–128

    Google Scholar 

  96. Ren C, Yang B, Wu M et al (2010) Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. J Hazard Mater 182:123–129. https://doi.org/10.1016/J.JHAZMAT.2010.05.141

    Article  CAS  PubMed  Google Scholar 

  97. Dey AK, Mishra SR, Ahmaruzzaman M (2023) Solar light–based advanced oxidation processes for degradation of methylene blue dye using novel Zn-modified CeO2@biochar. Environ Sci Pollut Res 30:53887–53903. https://doi.org/10.1007/S11356-023-26183-2/TABLES/1

    Article  CAS  Google Scholar 

  98. Li C, Wang B, Cui H et al (2013) Preparation and characterization of buoyant nitrogen-doped TiO2 composites supported by fly ash cenospheres for photocatalytic applications. J Mater Sci Technol 29:835–840. https://doi.org/10.1016/J.JMST.2013.04.027

    Article  ADS  CAS  Google Scholar 

  99. Zhu J, Liu S, Ge J et al (2016) Synthesis of Fe2O3-TiO2/fly-ash-cenosphere composite and its mechanism of photocatalytic oxidation under visible light. Res Chem Intermed 42:3637–3654. https://doi.org/10.1007/S11164-015-2236-6/FIGURES/13

    Article  CAS  Google Scholar 

  100. Huo P, Yan Y, Li S et al (2010) H2O2 modified surface of TiO2/fly-ash cenospheres and enhanced photocatalytic activity on methylene blue. Desalination 263:258–263. https://doi.org/10.1016/J.DESAL.2010.06.067

    Article  CAS  Google Scholar 

  101. Kalpana K, Selvaraj V (2015) Photodegradation and antibacterial studies of ZnS enwrapped fly ash nanocomposite for multipurpose industrial applications. RSC Adv 5:47766–47777. https://doi.org/10.1039/C4RA16642F

    Article  ADS  CAS  Google Scholar 

  102. El Qada EN, Allen SJ, Walker GM (2006) Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chem Eng J 124:103–110. https://doi.org/10.1016/J.CEJ.2006.08.015

    Article  Google Scholar 

  103. Zhang Y, Liu L (2013) Fly ash-based geopolymer as a novel photocatalyst for degradation of dye from wastewater. Particuology 11:353–358. https://doi.org/10.1016/J.PARTIC.2012.10.007

    Article  CAS  Google Scholar 

  104. Setthaya N, Chindaprasirt P, Yin S, Pimraksa K (2017) TiO2-zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye. Powder Technol 313:417–426. https://doi.org/10.1016/J.POWTEC.2017.01.014

    Article  CAS  Google Scholar 

  105. Ökte AN, Karamanis D, Tuncel D (2014) Dual functionality of TiO2-flyash nanocomposites: water vapor adsorption and photocatalysis. Catal Today 230:205–213. https://doi.org/10.1016/J.CATTOD.2014.01.031

    Article  Google Scholar 

  106. Visa M, Duta A (2013) Methyl-orange and cadmium simultaneous removal using fly ash and photo-Fenton systems. J Hazard Mater 244–245:773–779. https://doi.org/10.1016/J.JHAZMAT.2012.11.013

    Article  PubMed  Google Scholar 

  107. Kanakaraju D, Bin-Ya MH, Lim YC, Pace A (2020) Combined Adsorption/Photocatalytic dye removal by copper-titania-fly ash composite. Surf Interfaces 19:100534. https://doi.org/10.1016/J.SURFIN.2020.100534

    Article  CAS  Google Scholar 

  108. El Mragui A, Zegaoui O, Daou I (2019) Esteves da Silva JCG (2019) Preparation, characterization, and photocatalytic activity under UV and visible light of Co, Mn, and Ni mono-doped and (P, Mo) and (P, W) co-doped TiO2 nanoparticles: a comparative study. Environ Sci Pollut Res 2820(28):25130–25145. https://doi.org/10.1007/S11356-019-04754-6

    Article  Google Scholar 

  109. Dagar A, Narula AK (2018) Visible-light induced photodegradation of organic contaminants in water using Fe3O4 nanoparticles modified polypyrrole/fly ash cenosphere composite. Russ J Phys Chem 92:2853–2860. https://doi.org/10.1134/S0036024419010060

    Article  Google Scholar 

  110. Sun YX, Zhang J (2013) Photocatalytic degradation of methyl orange and phenol by BiVO4-loaded fly ash cenospheres (FACs) composite. Adv Mater Res 821–822:471–475. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.821-822.471

    Article  Google Scholar 

  111. Zhao Z, Lei Y, Liu W et al (2017) Fly ash cenospheres as multifunctional supports of g-C3N4/N-TiO2 with enhanced visible-light photocatalytic activity and adsorption. Adv Powder Technol 28:3233–3240. https://doi.org/10.1016/J.APT.2017.09.035

    Article  CAS  Google Scholar 

  112. Giribabu PVS, Swaminathan G (2015) Synergetic degradation of reactive dye Acid Red 1 by cobalt-doped lignite fly ash. New pub Balaban 57:16955–16962. https://doi.org/10.1080/19443994.2015.1082509

    Article  CAS  Google Scholar 

  113. Visa M, Andronic L, Duta A (2015) Fly ash-TiO2 nanocomposite material for multi-pollutants wastewater treatment. J Environ Manag 150:336–343. https://doi.org/10.1016/J.JENVMAN.2014.10.026

    Article  CAS  Google Scholar 

  114. Gilja V, Katancic Z, Krehula LK et al (2019) Eflciency of TiO2 catalyst supported by modified waste fly ash during photodegradation of RR45 dye. IEEE J Sel Top Quantum Electron 26:292–300. https://doi.org/10.1515/SECM-2019-0017/MACHINEREADABLECITATION/RIS

    Article  CAS  Google Scholar 

  115. Wang G (2011) Photocatalytic degradation of reactive brilliant blue KN-R by N, Fe- TiO2/FFA. Adv Mater Res 183–185:2028–2031. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.183-185.2028

    Article  Google Scholar 

  116. Chen H, Zhao L, Xiang Y et al (2015) A novel Zn–TiO2/C@SiO2 nanoporous material on rice husk for photocatalytic applications under visible light. New Pub Balaban 57:9660–9670. https://doi.org/10.1080/19443994.2015.1035339

    Article  CAS  Google Scholar 

  117. Huo P, Yan Y, Li S et al (2010) Floating photocatalysts of fly-ash cenospheres supported AgCl/TiO2 films with enhanced Rhodamine B photodecomposition activity. Desalination 256:196–200. https://doi.org/10.1016/J.DESAL.2010.01.012

    Article  CAS  Google Scholar 

  118. G. Sudha ES, (2015) Synthesis, Characterization and Photocatalytic Study of Cerium Oxide/Zeolite-NaX Catalyst with Brilliant Green Dye Degradation. J Adv Chem Sci 19:117–120

    Google Scholar 

  119. Zhang YJ, He PY, Zhang YX, Chen H (2018) A novel electroconductive graphene/fly ash-based geopolymer composite and its photocatalytic performance. Chem Eng J 334:2459–2466. https://doi.org/10.1016/J.CEJ.2017.11.171

    Article  CAS  Google Scholar 

  120. Zhang YJ, He PY, Yang MY, Kang L (2017) A new graphene bottom ash geopolymeric composite for photocatalytic H2 production and degradation of dyeing wastewater. Int J Hydrogen Energy 42:20589–20598. https://doi.org/10.1016/J.IJHYDENE.2017.06.156

    Article  CAS  Google Scholar 

  121. Lu Z, Zhou W, Huo P et al (2013) Performance of a novel TiO2 photocatalyst based on the magnetic floating fly-ash cenospheres for the purpose of treating waste by waste. Chem Eng J 225:34–42. https://doi.org/10.1016/J.CEJ.2013.03.077

    Article  CAS  Google Scholar 

  122. Lu Z, Huo P, Luo Y et al (2013) Performance of molecularly imprinted photocatalysts based on fly-ash cenospheres for selective photodegradation of single and ternary antibiotics solution. J Mol Catal A Chem 378:91–98. https://doi.org/10.1016/J.MOLCATA.2013.06.001

    Article  CAS  Google Scholar 

  123. Saravanan R, Gracia F, Stephen A (2017) Basic principles, mechanism, and challenges of photocatalysis. Nanocompos Vis Light Induced Photocatal. https://doi.org/10.1007/978-3-319-62446-4_2

    Article  Google Scholar 

  124. Darvishi Cheshmeh Soltani R, Khataee AR, Mashayekhi M (2015) Photocatalytic degradation of a textile dye in aqueous phase over ZnO nanoparticles embedded in biosilica nanobiostructure. New pub Balaban 57:13494–13504. https://doi.org/10.1080/19443994.2015.1058193

    Article  CAS  Google Scholar 

  125. Subash B, Krishnakumar B, Sreedhar B et al (2013) Highly active WO3–Ag–ZnO photocatalyst driven by day light illumination. Superlattices Microstruct 54:155–171. https://doi.org/10.1016/J.SPMI.2012.11.009

    Article  ADS  CAS  Google Scholar 

  126. Peng X, Luan Z, Ding J et al (2005) Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater Lett 59:399–403. https://doi.org/10.1016/J.MATLET.2004.05.090

    Article  CAS  Google Scholar 

  127. Ahmed S, Rasul MG, Martens WN et al (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261:3–18. https://doi.org/10.1016/J.DESAL.2010.04.062

    Article  CAS  Google Scholar 

  128. Ranjan Mishra S, Gadore V, Ahmaruzzaman M (2022) Nanostructured composite materials for treatment of dye contaminated water. Nanohybrid materials for water purification. Springer, Singapore, pp 97–120

    Chapter  Google Scholar 

  129. Gadore V, Mishra SR, Ahmaruzzaman M (2023) One-pot synthesis of CdS/CeO2 heterojunction nanocomposite with tunable bandgap for the enhanced advanced oxidation process. Sci Rep 13:7708. https://doi.org/10.1038/s41598-023-34742-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mishra SR, Gadore V, Ahmaruzzaman M (2023) Inorganic–organic hybrid quantum dots for AOP-mediated photodegradation of ofloxacin and para-nitrophenol in diverse water matrices. Npj Clean Water. 6:1–24. https://doi.org/10.1038/s41545-023-00291-5

    Article  CAS  Google Scholar 

  131. Mishra SR, Gadore V, Ahmaruzzaman M (2023) Development of high-performance bi-functional novel CdSnS2 atom cluster for adsorption of Rose Bengal and AOP-assisted degradation of Methylene Blue. Environ Sci Water Res Technol 9:586–602. https://doi.org/10.1039/D2EW00654E

    Article  CAS  Google Scholar 

  132. Mishra SR, Gadore V, Ghotekar S, Ahmaruzzaman M (2023) Insights into the enhanced photocatalytic and antioxidant properties of novel biogenically synthesised β-In2S3 quantum dots. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2023.2186228

    Article  Google Scholar 

  133. Zhu S, Wang D (2017) Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv Energy Mater 7:1700841. https://doi.org/10.1002/AENM.201700841

    Article  Google Scholar 

  134. Song J, Wang X, Bu Y et al (2017) Photocatalytic enhancement of floating photocatalyst: layer-by-layer hybrid carbonized chitosan and Fe-N- codoped TiO2 on fly ash cenospheres. Appl Surf Sci 391:236–250. https://doi.org/10.1016/J.APSUSC.2016.04.021

    Article  ADS  CAS  Google Scholar 

  135. Neelavannan MG, Ahmed Basha C (2008) Electrochemical-assisted photocatalytic degradation of textile washwater. Sep Purif Technol 61:168–174. https://doi.org/10.1016/J.SEPPUR.2007.10.009

    Article  CAS  Google Scholar 

  136. Menon SG, Kulkarni SD, Choudhari KS, Santhosh C (2016) Diffusion-controlled growth of CuAl2O4 nanoparticles: effect of sintering and photodegradation of methyl orange. J Exp Nanosci 11:1227–1241. https://doi.org/10.1080/17458080.2016.1209585

    Article  CAS  Google Scholar 

  137. Mangalam J, Kumar M, Sharma M, Joshi M (2019) High adsorptivity and visible light assisted photocatalytic activity of silver/reduced graphene oxide (Ag/rGO) nanocomposite for wastewater treatment. Nano-Struct Nano-Objects 17:58–66. https://doi.org/10.1016/J.NANOSO.2018.11.003

    Article  CAS  Google Scholar 

  138. Taourati R, Khaddor M, El Kasmi A (2019) Stable ZnO nanocatalysts with high photocatalytic activity for textile dye treatment. Nano-Struct Nano-Objects 18:100303. https://doi.org/10.1016/J.NANOSO.2019.100303

    Article  CAS  Google Scholar 

  139. Belviso C (2018) State-of-the-art applications of fly ash from coal and biomass: a focus on zeolite synthesis processes and issues. Prog Energy Combust Sci 65:109–135. https://doi.org/10.1016/J.PECS.2017.10.004

    Article  Google Scholar 

  140. Yilmaz N, Davis SM (2016) Polycyclic aromatic hydrocarbon (PAH) formation in a diesel engine fueled with diesel, biodiesel and biodiesel/n-butanol blends. Fuel 181:729–740. https://doi.org/10.1016/J.FUEL.2016.05.059

    Article  CAS  Google Scholar 

  141. Li G, Wei W, Shao X et al (2018) A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts. J Environ Sci 67:78–88. https://doi.org/10.1016/J.JES.2017.08.003

    Article  CAS  Google Scholar 

  142. Ma X, Li S, Hou Y et al (2022) Adsorption of low-concentration organic pollutants from typical coal-fired power plants by activated carbon injection. Process Saf Environ Prot 159:1174–1183. https://doi.org/10.1016/J.PSEP.2022.02.002

    Article  CAS  Google Scholar 

  143. Ge JC, Choi NJ (2017) Fabrication of functional polyurethane/rare earth nanocomposite membranes by electrospinning and its VOCs absorption capacity from air. Nanomaterials 7:60. https://doi.org/10.3390/NANO7030060

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kim HJ, Yoon JW, Il CK et al (2013) Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. Nanoscale 5:7066–7073. https://doi.org/10.1039/C3NR01281F

    Article  ADS  CAS  PubMed  Google Scholar 

  145. Rayalu SS, Meshram SU, Biniwale RB et al (2006) Volatile organic carbon monitoring in indoor environment using a versatile hydrophobic flyash-based zeolite as adsorbent. Curr Sci 91:497–503

    CAS  Google Scholar 

  146. Kim HJ, Pant HR, Choi NJ, Kim CS (2013) Composite electrospun fly ash/polyurethane fibers for absorption of volatile organic compounds from air. Chem Eng J 230:244–250. https://doi.org/10.1016/J.CEJ.2013.06.090

    Article  CAS  Google Scholar 

  147. Ahmaruzzaman M, Gupta VK (2012) Application of coal fly ash in air quality management. Ind Eng Chem Res 51:15299–15314. https://doi.org/10.1021/IE301336M/ASSET/IMAGES/IE-2012-01336M_M004.GIF

    Article  CAS  Google Scholar 

  148. Qian Q, Gong C, Zhang Z, Yuan G (2015) Removal of VOCs by activated carbon microspheres derived from polymer: a comparative study. Adsorption 21:333–341. https://doi.org/10.1007/S10450-015-9673-9/FIGURES/8

    Article  CAS  Google Scholar 

  149. Kim HJ, Pant HR, Choi NJ, Kim CS (2014) Fly ash/polyurethane thin film for the adsorption of volatile organic compounds (VOCs) from air. Fibers Polym 15:1393–1398. https://doi.org/10.1007/S12221-014-1393-3/METRICS

    Article  CAS  Google Scholar 

  150. Peloso A, Rovatti M, Ferraiolo G (1983) Fly ash as adsorbent material for toluene vapours. Resour Conserv 10:211–220. https://doi.org/10.1016/0166-3097(83)90015-9

    Article  CAS  Google Scholar 

  151. Rovatti M, Peloso A, Ferraiolo G (1988) Susceptibility to regeneration of fly ash as an adsorbent material. Resour, Conserv Recycl 1(2):137–143. https://doi.org/10.1016/0921-3449(88)90050-X

    Article  CAS  Google Scholar 

  152. Rovatti M, Bisi M, Ferraiolo G (1992) High added value products from difficult wastes. Resour Conserv Recycl 7:271–283. https://doi.org/10.1016/0921-3449(92)90022-T

    Article  Google Scholar 

  153. Rothenberg SJ, Mettzler G, Poliner J et al (1991) Adsorption kinetics of vapor-phase m-xylene on coal fly ash. Environ Sci Technol 25:930–935. https://doi.org/10.1021/ES00017A016/ASSET/ES00017A016.FP.PNG_V03

    Article  ADS  CAS  Google Scholar 

  154. Eiceman GA, Vandiver VJ (1983) Adsorption of polycyclic aromatic hydrocarbons on fly ash from a municipal incinerator and a coal-fired power plant. Atmos Environ 17:461–465. https://doi.org/10.1016/0004-6981(83)90119-1

    Article  ADS  CAS  Google Scholar 

  155. Low GKC, Batley GE (1988) Comparative studies of adsorption of polycyclic aromatic hydrocarbons by fly ashes from the combustion of some australian coal. Environ Sci Technol 22:322–327. https://doi.org/10.1021/ES00168A013/ASSET/ES00168A013.FP.PNG_V03

    Article  ADS  CAS  PubMed  Google Scholar 

  156. Liu J, Wang T, Shi N et al (2022) Enhancing the interaction between Mn and Ce oxides supported on fly ash with organic acid ligands interface modification for effective VOC removal: a combined experimental and DFT + U study. Fuel 313:123043. https://doi.org/10.1016/J.FUEL.2021.123043

    Article  CAS  Google Scholar 

  157. Liu J, Shi N, Wang T et al (2021) Significant enhancement of VOCs conversion by facile mechanochemistry coupled MnO2 modified fly ash: Mechanism and application. Fuel 304:121443. https://doi.org/10.1016/J.FUEL.2021.121443

    Article  CAS  Google Scholar 

  158. Wang W, Zhao Z, Liu F, Wang S (2005) Study of NO/NOx removal from flue gas contained fly ash and water vapor by pulsed corona discharge. J Electrostat 63:155–164. https://doi.org/10.1016/J.ELSTAT.2004.10.002

    Article  CAS  Google Scholar 

  159. Rokni E, Panahi A, Ren X, Levendis YA (2016) Curtailing the generation of sulfur dioxide and nitrogen oxide emissions by blending and oxy-combustion of coals. Fuel 181:772–784. https://doi.org/10.1016/J.FUEL.2016.05.023

    Article  CAS  Google Scholar 

  160. Rubio B, Izquierdo MT, Mayoral MC et al (2007) Unburnt carbon from coal fly ashes as a precursor of activated carbon for nitric oxide removal. J Hazard Mater 143:561–566. https://doi.org/10.1016/J.JHAZMAT.2006.09.074

    Article  CAS  PubMed  Google Scholar 

  161. Rubel A, Andrews R, Gonzalez R et al (2005) Adsorption of Hg and NOX on coal by-products. Fuel 84:911–916. https://doi.org/10.1016/J.FUEL.2005.01.006

    Article  CAS  Google Scholar 

  162. Hwang JY (2002) Unburned carbon from fly ash for mercury adsorption: I: separation and characterization of unburned carbon. J Miner Mater Charact Eng 1:39

    Google Scholar 

  163. Mercedes Maroto-Valer M, Taulbee DN, Schobert HH et al (1999) Use of unburned carbon in fly ash as precursor for the development of activated carbons. Int ash Util Symp 19:1–18

    Google Scholar 

  164. Tokunaga O, Namba H, Suzuki N (1985) Enhancement of removal of SO2 and NOx by powdery materials in radiation treatment of exhaust gases. Int J Appl Radiat Isot 36:807–812. https://doi.org/10.1016/0020-708X(85)90032-8

    Article  CAS  Google Scholar 

  165. Jayaram S, Castle GSP, Chang JS et al (1996) Semipilot plant pulse energized cold-precharger electrostatic precipitator tests for collection of moderately high resistivity flyash particles. IEEE Trans Ind Appl 32:851–857. https://doi.org/10.1109/28.511641

    Article  Google Scholar 

  166. Helfritch DJ (1993) SO2 and NOx removal from flue gas by means of lime spray dryer followed by electron beam irradiation. Non-Thermal Plasma Tech Pollut Control. https://doi.org/10.1007/978-3-642-78476-7_3

    Article  Google Scholar 

  167. Tsukamoto S, Namihira T, Wang D et al (2001) Effects of fly ash on NOx removal by pulsed streamers. IEEE Trans Plasma Sci 29:29–36. https://doi.org/10.1109/27.912938

    Article  ADS  CAS  Google Scholar 

  168. Zhao Z (1996) Investigation on the removal of NO and NO~ x from Flue gas using a pulsed corona discharge accounting for flyash and humidity effects. Chin J Environ Sci 17:27–30

    CAS  Google Scholar 

  169. Yu CJ, Xu F, Luo ZY et al (2009) Influences of water vapor and fly ash addition on NO and SO2 gas conversion efficiencies enhanced by pulsed corona discharge. J Electrostat 67:829–834. https://doi.org/10.1016/J.ELSTAT.2009.06.003

    Article  CAS  Google Scholar 

  170. Tsuchiai H, Ishizuka T, Nakamura H et al (1996) Removal of sulfur dioxide from flue gas by the absorbent prepared from coal ash: effects of nitrogen oxide and water vapor. Ind Eng Chem Res 35:851–855. https://doi.org/10.1021/IE950322P/ASSET/IMAGES/MEDIUM/IE950322PE00004.GIF

    Article  CAS  Google Scholar 

  171. Jozewicz W, Rochelle GT (1986) Fly ash recycle in dry scrubbing. Environ Prog 5:219–224. https://doi.org/10.1002/EP.670050405

    Article  CAS  Google Scholar 

  172. Brown K, Huang H, Allen J, Livengood C (1988) Combined nitrogen oxides/sulfur dioxide control in a spray-dryer/fabric-filter system. Energy Syst Div. https://doi.org/10.2172/7178213

    Article  Google Scholar 

  173. Tsuchiai H, Ishizuka T, Ueno T et al (1995) Highly active absorbent for so2 removal prepared from coal fly ash. Ind Eng Chem Res 34:1404–1411. https://doi.org/10.1021/IE00043A048/ASSET/IE00043A048.FP.PNG_V03

    Article  CAS  Google Scholar 

  174. Zheng J, Wang J, Yang F et al (2023) Influence and mechanism of the adsorption and reactions of residual NH3, NO, and O2 on coal ash after the selective noncatalytic reduction process. Fuel 343:127826. https://doi.org/10.1016/J.FUEL.2023.127826

    Article  CAS  Google Scholar 

  175. Wang Y, Ma S, Wang X et al (2022) Study on NO catalytic oxidation by manganese-based catalysts supported on high alumina fly ash. Chin J Process Eng 22:1262. https://doi.org/10.12034/J.ISSN.1009-606X.221416

    Article  CAS  Google Scholar 

  176. Zhao S, Song K, Zhu J et al (2022) Gd-Mn-Ti composite oxides anchored on waste coal fly ash for the low-temperature catalytic reduction of nitrogen oxide. Sep Purif Technol 302:122119. https://doi.org/10.1016/J.SEPPUR.2022.122119

    Article  CAS  Google Scholar 

  177. Duan X, Dou J, Zhao Y et al (2020) A study on Mn-Fe catalysts supported on coal fly ash for low-temperature selective catalytic reduction of NOX in Flue gas. Catalyst 10:1399. https://doi.org/10.3390/CATAL10121399

    Article  CAS  Google Scholar 

  178. Qi K, Xie J, Mei D et al (2018) The utilization of fly ash-MnOx/FA catalysts for NOx removal. Mater Res Express 5:065526. https://doi.org/10.1088/2053-1591/AACD8E

    Article  ADS  Google Scholar 

  179. Li Y, Gao L, Zhang J et al (2022) Synergetic utilization of microwave - assisted fly ash and carbide slag for simultaneous desulfurization and denitrification: high efficiency, low cost and catalytic mechanism. Chem Eng J 437:135488. https://doi.org/10.1016/J.CEJ.2022.135488

    Article  CAS  Google Scholar 

  180. Liu M, Zhang L, Zhou W et al (2020) The mechanism of microwave-induced discharge between submillimeter active coke. Plasma Sources Sci Technol 29:75015

    Article  CAS  Google Scholar 

  181. Matsushima N, Li Y, Nishioka M et al (2004) Novel dry-desulfurization process using Ca(OH) 2/fly ash sorbent in a circulating fluidized bed. Environ Sci Technol 38:6867–6874. https://doi.org/10.1021/ES035373P/ASSET/IMAGES/MEDIUM/ES035373PE00010.GIF

    Article  ADS  CAS  PubMed  Google Scholar 

  182. Allen D, Hayhurst AN (1996) Reaction between gaseous sulfur dioxide and solid calcium oxide mechanism and kinetics. J Chem Soc Faraday Trans 92:1227–1238. https://doi.org/10.1039/FT9969201227

    Article  CAS  Google Scholar 

  183. Gupta VK, Mittal A, Gajbe V, Mittal J (2008) Adsorption of basic fuchsin using waste materials—bottom ash and deoiled soya—as adsorbents. J Colloid Interface Sci 319:30–39. https://doi.org/10.1016/J.JCIS.2007.09.091

    Article  ADS  CAS  PubMed  Google Scholar 

  184. Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas, (2009) Low-cost adsorbents: growing approach to wastewater treatment: a review. Crit Rev Environ Sci Technol 39:783–842. https://doi.org/10.1080/10643380801977610

    Article  Google Scholar 

  185. Ishizuka T, Tsuchiai H, Murayama T et al (2000) Preparation of active absorbent for dry-type flue gas desulfurization from calcium oxide, coal fly ash, and gypsum. Ind Eng Chem Res 39:1390–1396. https://doi.org/10.1021/IE990699L/ASSET/IMAGES/MEDIUM/IE990699LE00001.GIF

    Article  CAS  Google Scholar 

  186. Renedo MJ, Fernández J (2002) Preparation, characterization, and calcium utilization of fly Ash/Ca(OH)2 sorbents for dry desulfurization at low temperature. Ind Eng Chem Res 41:2412–2417. https://doi.org/10.1021/IE010938G/ASSET/IMAGES/LARGE/IE010938GF00004.JPEG

    Article  CAS  Google Scholar 

  187. Al-Shawabkeh A, Maisuda H, Hasatani M (1995) Comparative reactivity of treated FBC- and PCC-Fly ash for SO2 removal. Can J Chem Eng 73:678–685. https://doi.org/10.1002/CJCE.5450730511

    Article  CAS  Google Scholar 

  188. Davini P (1996) Investigation of the SO2 adsorption properties of Ca(OH)2-fly ash systems. Fuel 75:713–716. https://doi.org/10.1016/0016-2361(95)00303-7

    Article  CAS  Google Scholar 

  189. Li Y, Nishioka M, Sadakata M (1999) High calcium utilization and gypsum formation for dry desulfurization process. Energy Fuels 13:1015–1020. https://doi.org/10.1021/EF9802781/ASSET/IMAGES/LARGE/EF9802781F00006.JPEG

    Article  CAS  Google Scholar 

  190. Davini P (1995) Investigation of flue gas desulphurization by fly ash and calcium hydroxide mixtures. Resour Conserv Recycl 15:193–201. https://doi.org/10.1016/0921-3449(95)00029-1

    Article  Google Scholar 

  191. Davini P (2002) Flue gas treatment by activated carbon obtained from oil-fired fly ash. Carbon N Y 40:1973–1979. https://doi.org/10.1016/S0008-6223(02)00049-0

    Article  CAS  Google Scholar 

  192. Guo Q, Chen M, Zhang J et al (2022) Microwave-assisted industrial wastes of fly ash and carbide slag as adsorbents for simultaneous desulfurization and denitrification. Sep Purif Technol 303:122176. https://doi.org/10.1016/J.SEPPUR.2022.122176

    Article  CAS  Google Scholar 

  193. Wang KQ, Gao XM, Lin B et al (2023) An efficient calcium-based sorbent for flue gas dry-desulfurization: promotion roles of nitrogen oxide and oxygen. RSC Adv 13:1312–1319. https://doi.org/10.1039/D2RA05769G

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  194. Qi L, Luo J, Wang W, Zhao W (2023) Adsorption of SO2 from sintering flue gas by alkali modified fly ash in electrostatic precipitator. Sep Sci Technol 58:1237–1251. https://doi.org/10.1080/01496395.2023.2180392

    Article  CAS  Google Scholar 

  195. Tsuchiai H, Ishizuka T, Nakamura H et al (1996) Study of flue gas desulfurization absorbent prepared from coal fly ash: effects of the composition of the absorbent on the activity. Ind Eng Chem Res 35:2322–2326. https://doi.org/10.1021/IE9507033/ASSET/IMAGES/LARGE/IE9507033F00005.JPEG

    Article  CAS  Google Scholar 

  196. Lee KT, Mohamed AR, Bhatia S, Chu KH (2005) Removal of sulfur dioxide by fly ash/CaO/CaSO4 sorbents. Chem Eng J 114:171–177. https://doi.org/10.1016/J.CEJ.2005.08.020

    Article  CAS  Google Scholar 

  197. Lee KT, Bhatia S, Mohamed AR (2005) Preparation and characterization of sorbents prepared from ash (waste material) for sulfur dioxide (SO2) removal. J Mater Cycles Waste Manag 7:16–23. https://doi.org/10.1007/S10163-004-0121-2/METRICS

    Article  CAS  Google Scholar 

  198. Zhou F, Cheng J, Liu J et al (2018) Improving physicochemical properties of upgraded Indonesian lignite through microwave irradiation with char adsorbent. Fuel 218:275–281. https://doi.org/10.1016/J.FUEL.2018.01.044

    Article  CAS  Google Scholar 

  199. Wang Z, Liu J, Yang Y et al (2020) Regenerable CoxMn3−xO4 spinel sorbents for elemental mercury removal from syngas: experimental and DFT studies. Fuel 266:117105. https://doi.org/10.1016/J.FUEL.2020.117105

    Article  CAS  Google Scholar 

  200. Song G, Deng R, Yao Z et al (2020) Anthracite coal-based activated carbon for elemental Hg adsorption in simulated flue gas: preparation and evaluation. Fuel 275:117921. https://doi.org/10.1016/J.FUEL.2020.117921

    Article  CAS  Google Scholar 

  201. Liu Z, Liu D, Zhao B et al (2020) Mercury removal based on adsorption and oxidation by fly ash: a review. Energy Fuels 34:11840–11866. https://doi.org/10.1021/ACS.ENERGYFUELS.0C02209/ASSET/IMAGES/LARGE/EF0C02209_0013.JPEG

    Article  CAS  Google Scholar 

  202. Yang J, Zhao Y, Zhang S et al (2017) Mercury removal from flue gas by magnetospheres present in fly ash: role of iron species and modification by HF. Fuel Process Technol 167:263–270. https://doi.org/10.1016/J.FUPROC.2017.07.016

    Article  CAS  Google Scholar 

  203. Wang F, Wang S, Meng Y et al (2016) Mechanisms and roles of fly ash compositions on the adsorption and oxidation of mercury in flue gas from coal combustion. Fuel 163:232–239. https://doi.org/10.1016/J.FUEL.2015.09.065

    Article  CAS  Google Scholar 

  204. Świerczok A, Jędrusik M, Łuszkiewicz D (2020) Reduction of mercury emissions from combustion processes using electrostatic precipitators. J Electrostat 104:103421. https://doi.org/10.1016/J.ELSTAT.2020.103421

    Article  Google Scholar 

  205. Xing L, Xu Y, Zhong Q (2012) Mn and Fe modified fly ash as a superior catalyst for elemental mercury capture under air conditions. Energy Fuels 26:4903–4909. https://doi.org/10.1021/EF3005256/ASSET/IMAGES/EF-2012-005256_M006.GIF

    Article  CAS  Google Scholar 

  206. Xu Y, Zhong Q, Xing L (2014) Gas-phase elemental mercury removal from flue gas by cobalt-modified fly ash at low temperatures. Environ Technol 35:2870–2877. https://doi.org/10.1080/09593330.2014.924569

    Article  CAS  PubMed  Google Scholar 

  207. Zhang Y, Duan W, Liu Z, Cao Y (2014) Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor. Fuel 128:274–280. https://doi.org/10.1016/J.FUEL.2014.03.009

    Article  CAS  Google Scholar 

  208. Zhang Y, Zhao L, Guo R et al (2015) Mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor. J Environ Sci 33:156–162. https://doi.org/10.1016/J.JES.2015.01.011

    Article  CAS  Google Scholar 

  209. Song N, Teng Y, Wang J et al (2014) Effect of modified fly ash with hydrogen bromide on the adsorption efficiency of elemental mercury. J Therm Anal Calorim 116:1189–1195. https://doi.org/10.1007/S10973-014-3701-Y/FIGURES/7

    Article  CAS  Google Scholar 

  210. Yang J, Zhao Y, Zhang J, Zheng C (2016) Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash: part 1 catalyst characterization and performance evaluation. Fuel 164:419–428. https://doi.org/10.1016/J.FUEL.2015.08.012

    Article  CAS  Google Scholar 

  211. Xu W, Wang H, Zhu T et al (2013) Mercury removal from coal combustion flue gas by modified fly ash. J Environ Sci 25:393–398. https://doi.org/10.1016/S1001-0742(12)60065-5

    Article  CAS  Google Scholar 

  212. Zhang Y, Zhao L, Guo R et al (2017) Influences of NO on mercury adsorption characteristics for HBr modified fly ash. Int J Coal Geol 170:77–83. https://doi.org/10.1016/J.COAL.2016.10.002

    Article  CAS  Google Scholar 

  213. Wang S, Zhang Y, Gu Y et al (2019) Coupling of bromide and on-line mechanical modified fly ash for mercury removal at a 1000 MW coal-fired power plant. Fuel 247:179–186. https://doi.org/10.1016/J.FUEL.2019.03.053

    Article  CAS  Google Scholar 

  214. Li L, Pan SW, Hu JJ et al (2013) Experimental research on fly ash modified adsorption of mercury removal efficiency of flue gas. Adv Mater Res 800:132–138. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.800.132

    Article  Google Scholar 

  215. He P, Zhang X, Peng X et al (2015) Enhancement using external magnetic field on mercury capture by fly ash. Fuel 162:211–214. https://doi.org/10.1016/J.FUEL.2015.09.014

    Article  CAS  Google Scholar 

  216. Yang S, Yan N, Guo Y et al (2011) Gaseous elemental mercury capture from flue gas using magnetic nanosized (Fe3-xMnx)1-δO4. Environ Sci Technol 45:1540–1546. https://doi.org/10.1021/ES103391W/SUPPL_FILE/ES103391W_SI_001.PDF

    Article  ADS  CAS  PubMed  Google Scholar 

  217. Zeng X, Xu Y, Zhang B et al (2017) Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma. Chem Eng J 309:503–512. https://doi.org/10.1016/J.CEJ.2016.10.047

    Article  CAS  Google Scholar 

  218. Shi M, Luo G, Zhu H et al (2019) Surface modification of fly ash by non-thermal air plasma for elemental mercury removal from coal-fired flue gas. Environ Technol 42:306–317. https://doi.org/10.1080/09593330.2019.1627423

    Article  CAS  PubMed  Google Scholar 

  219. Wang J, Jiang C, Shi L et al (2022) Hg0 Removal by a palygorskite and fly ash supported MnO2-CeO2 catalyst at low temperature. Catalyst 12:662. https://doi.org/10.3390/CATAL12060662

    Article  CAS  Google Scholar 

  220. Qi L, Wang X, Wang W et al (2022) Mercury removal from coal combustion flue gas by pyrite-modified fly ash adsorbent. Environ Sci Pollut Res 29:39228–39238. https://doi.org/10.1007/S11356-022-18963-Z/FIGURES/11

    Article  CAS  Google Scholar 

  221. Xin F, Xiao R, Zhao Y, Zhang J (2022) Surface sulfidation modification of magnetospheres from fly ash for elemental mercury removal from coal combustion flue gas. Chem Eng J 436:135212. https://doi.org/10.1016/J.CEJ.2022.135212

    Article  CAS  Google Scholar 

  222. Wang J, Li D, Ju F et al (2015) Supercritical hydrothermal synthesis of zeolites from coal fly ash for mercury removal from coal derived gas. Fuel Process Technol 136:96–105. https://doi.org/10.1016/J.FUPROC.2014.10.020

    Article  CAS  Google Scholar 

  223. Ma L, Han L, Chen S et al (2019) Rapid synthesis of magnetic zeolite materials from fly ash and iron-containing wastes using supercritical water for elemental mercury removal from flue gas. Fuel Process Technol 189:39–48. https://doi.org/10.1016/J.FUPROC.2019.02.021

    Article  CAS  Google Scholar 

  224. Kunecki P, Wdowin M, Hanc E (2023) Fly ash-derived zeolites and their sorption abilities in relation to elemental mercury in a simulated gas stream. J Clean Prod 391:136181. https://doi.org/10.1016/J.JCLEPRO.2023.136181

    Article  CAS  Google Scholar 

  225. Zhu T, Kuang J, Xu W et al (2012) Study on mercury adsorption performance of modified fly ash. Adv Mater Res 343–344:246–249. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.343-344.246

    Article  Google Scholar 

  226. López-Antón MA, Abad-Valle P, Díaz-Somoano M et al (2009) The influence of carbon particle type in fly ashes on mercury adsorption. Fuel 88:1194–1200. https://doi.org/10.1016/J.FUEL.2007.07.029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Ahmaruzzaman.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadore, V., Mishra, S.R., Sillanpää, M. et al. Emerging applications of waste fly ash for remediation of environmental contaminants: a high-value and sustainable approach towards utilization of waste materials. Nanotechnol. Environ. Eng. (2024). https://doi.org/10.1007/s41204-024-00362-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-024-00362-z

Keywords

Navigation