Skip to main content
Log in

Synthesis of Fe2O3–TiO2/fly-ash-cenosphere composite and its mechanism of photocatalytic oxidation under visible light

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Fe2O3–TiO2/fly-ash-cenosphere (FAC) is a composite photocatalyst that was prepared by depositing Fe2O3 onto floating TiO2/FAC. Scanning electron microscopy, X-ray diffraction analysis, UV–Vis diffuse reflectance spectroscopy, N2 absorption–adsorption, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the properties of the composites. Results showed that the modified methods could maintain the metastable anatase phase of TiO2. The crystalline phase of Fe2O3 was attributed to hematite. The band gap absorption edge of Fe2O3–TiO2/FAC was approximately 650–700 nm, and the absorption of the photocatalysts had an evident redshift. The composite displayed excellent photocatalytic oxidation activity. The degradation ratio of methylene blue was 86.81 % within 60 min under visible light by using Fe2O3–TiO2/FAC/H2O2. This ratio is 2.25 and 1.38 times higher than those of TiO2/FAC and Fe2O3/FAC, respectively. The excellent catalytic ability was attributed to Fe3+ doping combined with Fe2O3–TiO2 heterojunction structure. Finally, a mechanism for the photocatalytic oxidation was proposed based on experimental results by using Fe2O3–TiO2/FAC under visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P.A. Pekakis, N.P. Xekoukoulotakis, D. Mantzavinos, Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res. 40, 1276–1286 (2006)

    Article  CAS  Google Scholar 

  2. Y. Ohko, I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T. Nakashima, Degradation of bisphenol A in water by TiO2 photocatalyst. Environ. Sci. Technol. 35, 2365–2368 (2001)

    Article  CAS  Google Scholar 

  3. A.R. Khataee, M.N. Pons, O. Zahraa, Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. J. Hazard. Mater. 168, 451–457 (2009)

    Article  CAS  Google Scholar 

  4. L. Xiao, J. Zhang, Y. Cong, Synergistic effects of doped Fe3+ and deposited Au on improving the photocatalytic activity of TiO2. Catal. Lett. 111, 207–211 (2006)

    Article  CAS  Google Scholar 

  5. J. Xu, Y. Ao, D. Fu, C. Yuan, Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light. Appl. Surf. Sci. 254, 3033–3038 (2008)

    Article  CAS  Google Scholar 

  6. Q. Xiao, J. Zhang, C. Xiao, Z. Si, X. Tan, Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Sol. Energy 82, 706–713 (2008)

    Article  CAS  Google Scholar 

  7. A.V. Rupa, D. Manikandan, D. Divakar, T. Sivakumar, Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of reactive yellow-17. J. Hazard. Mater. 147, 906–913 (2007)

    Article  CAS  Google Scholar 

  8. B. Wen, C. Liu, Y. Liu, Optimization of the preparation methods: synthesis of mesostructured TiO2 with high photocatalytic activities. J. Photochem. Photobiol. A 173, 7–12 (2005)

    Article  CAS  Google Scholar 

  9. Jun Lv, Tong Sheng, Su Lili, Xu Guangqing, Dongmei Wang, Zhixiang Zheng, N, S co-doped-TiO2/fly ash beads composite material and visible light photocatalytic activity. Appl. Surf. Sci. 284, 229–234 (2013)

    Article  CAS  Google Scholar 

  10. P.K. Surolia, R.J. Tayade, R.V. Jasra, TiO2-coated cenospheres as catalysts for photocatalytic degradation of methylene blue, p-nitroaniline, n-decane, and n-tridecane under solar irradiation. Ind. Eng. Chem. Res. 49, 8908–8919 (2010)

    Article  CAS  Google Scholar 

  11. P. Huo, Y. Yan, S. Li, H. Li, W. Huang, Floating photocatalysts of fly-ash cenospheres supported AgCl/TiO2 films with enhanced rhodamine B photodecomposition activity. Desalination 256, 196–200 (2010)

    Article  CAS  Google Scholar 

  12. D. Wu, P. Huo, Z. Lu, Preparation of heteropolyacid/TiO2/fly-ash-cenosphere photocatalyst for the degradation of ciprofloxacin from aqueous solutions. Appl. Surf. Sci. 258, 7008–7015 (2012)

    Article  CAS  Google Scholar 

  13. A. Amarjargal, Z. Jiang, L.D. Tijing, C.H. Park, I.T. Im, C.S. Kim, Nanosheet-based alpha-Fe2O3 hierarchical structure decorated with TiO2 nanospheres via a simple one-pot route: magnetically recyclable photocatalysts. J. Alloys Compd. 580, 143–147 (2013)

    Article  CAS  Google Scholar 

  14. K.H. Choi, S.L. Oh, D.Y. Kim, J.S. Jung, Size dependent photocatalytic activity of photofunctional magnetic core–shell (Fe3O4@TiO2) particles. J. Nanosci. Nanotechnol. 13, 7134–7137 (2013)

    Article  Google Scholar 

  15. N. Demir, G. Gündüz, M. Dükkan, Degradation of a textile dye, rhodamine 6G (Rh6G), by heterogeneous sonophotoFenton process in the presence of Fe-containing TiO2 catalysts. Environ. Sci. Pollut. Res. 22, 3193–3201 (2015)

    Article  CAS  Google Scholar 

  16. L. Deng, S. Wang, D. Liu, Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity. Catal. Lett. 129, 513–518 (2009)

    Article  CAS  Google Scholar 

  17. J. Zhu, J. Ren, Y. Huo, Nanocrystalline Fe/TiO2 visible photocatalyst with a mesoporous structure prepared via a nonhydrolytic sol–gel route. J. Phys. Chem. C 111, 18965–18969 (2007)

    Article  CAS  Google Scholar 

  18. X. Liu, Z. Jin, S. Bu, T. Yin, Influences of solvent on properties of TiO2 porous films prepared by a sol–gel method from the system containing PEG. Sol-Gel Sci. Technol. 36, 103–111 (2005)

    Article  CAS  Google Scholar 

  19. J. Yu, W. Wang, B. Cheng, B.-L. Su, Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment. J. Phys. Chem. C 113, 6743 (2009)

    Article  CAS  Google Scholar 

  20. Q. Xiao, Z.C. Si, J. Zhang, C. Xiao, X.K. Tan, Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J. Hazard. Mater. 150, 62–67 (2008)

    Article  CAS  Google Scholar 

  21. K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol. A 134, 139–142 (2000)

    Article  CAS  Google Scholar 

  22. H. Xu, H.M. Li, C.D. Wu, J.Y. Chu, Y.S. Yan, H.M. Shu, Preparation, characterization and photocatalytic activity of transition metal-loaded BiVO4. Mater. Sci. Eng. B 147, 52–56 (2008)

    Article  CAS  Google Scholar 

  23. S.B. Wang, Application of solid ash based catalysts in heterogeneous catalysis. Environ. Sci. Technol. 42, 7055–7063 (2008)

    Article  CAS  Google Scholar 

  24. H.X. Li, X.Y. Zhuang, Y.N. Huo, J. Zhu, Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization. Environ. Sci. Technol. 41, 4410–4414 (2007)

    Article  CAS  Google Scholar 

  25. M. Nair, Z.H. Luo, A. Heller, Rates of photocatalytic oxidation of crude oil on salt water on buoyant, cenosphere-attached titanium dioxide. Ind. Eng. Chem. Res. 32, 2318–2323 (1993)

    Article  CAS  Google Scholar 

  26. J.F. Zhu, F. Chen, J.L. Zhang, H.J. Chen, M. Anpo, Fe–TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J. Photochem. Photobiol. A 180, 196–204 (2006)

    Article  CAS  Google Scholar 

  27. J.F. Zhu, W. Zheng, B. He, J.L. Zhang, M. Anpo, Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Catal. A Chem. 216, 35–43 (2004)

    Article  CAS  Google Scholar 

  28. G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar, C.A. Grimes, Vertically oriented Ti–Fe–O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett. 7, 2356–2364 (2007)

    Article  CAS  Google Scholar 

  29. T. Fujii, F.M.F. de Groot, G.A. Sawatzky, F.C. Voogt, T. Hibma, K. Okada, In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 59, 3195–3202 (1999)

    Article  CAS  Google Scholar 

  30. L. Pan, J.J. Zou, X.W. Zhang, L. Wang, Photoisomerization of norbornadiene to quadricyclane using transition metal doped TiO2. Ind. Eng. Chem. Res. 49, 8526–8531 (2010)

    Article  CAS  Google Scholar 

  31. T. Hirakawa, Y. Nosaka, Properties of O2-and OH-formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 18, 3247–3254 (2002)

    Article  CAS  Google Scholar 

  32. M. Yin, Z. Li, J. Kou, Z. Zou, Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/eosin Y/rhodamine B system. Environ. Sci. Technol. 43, 8361–8366 (2009)

    Article  CAS  Google Scholar 

  33. Y. Li, J. Wang, H. Yao, L. Dang, Z. Li, Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation. J. Mol. Catal. A Chem. 334, 116–122 (2011)

    Article  CAS  Google Scholar 

  34. J. Jiang, X. Zhang, P. Sun, ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J. Phys. Chem. C 115, 20555–20564 (2011)

    Article  CAS  Google Scholar 

  35. Q. Xiang, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 115, 7355–7363 (2011)

    Article  CAS  Google Scholar 

  36. Y. Ma, X.T. Zhang, Z.S. Guan, Y.A. Cao, J.N. Yao, Effects of zinc(II) and iron(III) doping of titania films on their photoreactivity to decompose rhodamine B. J. Mater. Res. 16, 2928–2933 (2001)

    Article  CAS  Google Scholar 

  37. L.L. Peng, T.F. Xie, Y.C. Lu, H.M. Fan, D.J. Wang, Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys. Chem. Chem. Phys. 12, 8033–8041 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research project was financially supported by: Young and Middle-aged Academic Key Members of Anhui University of Science and Technology, Doctor’s degree Innovation Training Program (2013bj1105), International cooperative project of Anhui Province (12030-603003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaomin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Liu, S., Ge, J. et al. Synthesis of Fe2O3–TiO2/fly-ash-cenosphere composite and its mechanism of photocatalytic oxidation under visible light. Res Chem Intermed 42, 3637–3654 (2016). https://doi.org/10.1007/s11164-015-2236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2236-6

Keywords

Navigation