Skip to main content

Advertisement

Log in

Effects of fuel change to electricity on PM2.5 local levels in the Bus Rapid Transit System of Bogota

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The TransMilenio (TM) is a transport system. Twenty-year-old TM is a fast, highly efficient, and self-sufficient mode of passenger transport. This work aims to evaluate the effects of changing current TM diesel buses by electricity-powered buses (battery, wire-based), on the PM2.5 concentrations at surface level. Emissions calculations considering combustions and resuspension of TM and Non-TM were performed. A CFD model was implemented to estimate current PM2.5 concentrations at the roadside level, and the CFD results were validated using the statistic parameters: MB, RMSE, r, and IOA. Results from the emission calculations indicate that TM buses (30–50%) are one of the main sources of primary PM2.5 in all the considered urban sites in this study. Non-exhaust emissions from most vehicle categories were also identified as an important source of primary PM2.5 (40% of total emissions). The CFD model reproduced closely the trends and levels of PM2.5 concentrations measured at the roadside level in all the locations. Replacing TM diesel vehicles with electric vehicles reduces PM2.5 concentrations between 10 and 30% according to the CFD results obtained. Higher reductions can be achieved if policies are adopted to control other types of vehicles and non-exhaust emissions since they have a contribution of about 60%. Finally, this study shows that the combined use of emission calculations and advanced near-road dispersion models are useful tools to study and manage air quality in large cities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable.

References

  • Adams K, Greenbaum DS, Shaikh R, van Erp AM, Russell AG (2015) Particulate matter components, sources, and health: systematic approaches to testing effects. Journal of the Air and Waste Management Association 65(5):544–558. https://doi.org/10.1080/10962247.2014.1001884

    Article  CAS  Google Scholar 

  • Belalcazar LC, Fuhrer O, Ho MD, Zarate E, Clappier A (2009) Estimation of road traffic emission factors from a long term tracer study. Atmospheric Environment 36(43):5837

    Google Scholar 

  • Belalcazar LC, Clappier A, Blond N, Flassak T, Eichhorn J (2010) An evaluation of the estimation of road traffic emission factors from tracer studies. Atmospheric Environment 44(31):3814–3822. https://doi.org/10.1016/j.atmosenv.2010.06.038

    Article  CAS  Google Scholar 

  • Blocken B, Tominaga Y, Stathopoulos T (2013) CFD simulation of micro-scale pollutant dispersion in the built environment. CFD Simulation of Micro-Scale Pollutant Dispersion in the Built Environment 64:225

    Google Scholar 

  • BOGOTÁ ELEKTRIKA (2014) Everything about the app BOGOTÁ ELEKTRIKA. Retrieved from https://www.transmilenio.gov.co/publicaciones/148091/todo_sobre_app_bogota_elektrika/

  • BRT Data Organization (2019). Global BRT Data. Https://Brtdata.Org/.

  • Cain A, Darido G, Baltes MR, Rodriguez P, Barrios JC (2013) Applicability of TransMilenio Bus Rapid Transit System of Bogotá, Colombia, to the United States. Center for Urban Transportation Research (CUTR), University of South Florida 1(39):86

    Google Scholar 

  • Carslaw DC, Ropkins K (2012) Openair — an R package for air quality data analysis.

  • Castillo-Camacho MP, Tunarrosa-Grisales IC, Chacón-Rivera LM, Guevara-Luna MA, Belalcázar-Cerón L-C (2020) Personal exposure to PM 2.5 in the Massive Transport System of Bogotá and Medellín, Colombia. Asian Journal of Atmospheric Environment 14(3):210–224. https://doi.org/10.5572/ajae.2020.14.3.210

    Article  Google Scholar 

  • Castillo M (2011) Proyectos MDL en transporte masivo urbano

  • Cuéllar Y, Buitrago-Tello R, Belalcázar LC, Cuellar Y, Buitrago-Tello R, Belaleazar-Ceron L-C, Belalcazar-Ceron LC (2016) Life cycle emissions from a Bus Rapid Transit system and comparison with other modes of passenger transportation. Ct & F-Ciencia Tecnologia Y Futuro 6(3):123–134. https://doi.org/10.29047/01225383.13

    Article  Google Scholar 

  • Darido G, Cain A (2007) Report on South American Bus Rapid Transit Field Visits: tracking the evolution of the TransMilenio Model. (December), 1–40. Retrieved from http://trid.trb.org/view.aspx?id=849452

  • Derwent D, Fraser A, Abbott J, Enkin M, Willis P, Murrells T (2010) Evaluating the performance of air quality models

  • Donnelly RP, Lyons TJ, Flassak T (2009) Evaluation of results of a numerical simulation of dispersion in an idealised urban area for emergency response modelling. Atmospheric Environment 29(43):4423

    Google Scholar 

  • EPA (2020) AP-42: Compilation of air emissions factors. In Air Emissions Factors and Quantification. Retrieved from https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors

  • Gidhagen L, Johansson C, Langner J, Olivares G (2004) Simulation of NOx and ultrafine particles in a street canyon in Stockholm, Sweden. Atmospheric Environment 14(38):2044

    Google Scholar 

  • Guevara-Luna MA, Casallas A, Belalcázar Cerón LC, Clappier A (2020) Implementation and evaluation of WRF simulation over a city with complex terrain using Alos-Palsar 0.4 s topography. Environmental Science and Pollution Research 27:37818–37838. https://doi.org/10.1007/s11356-020-09824-8

    Article  Google Scholar 

  • Guevara F, Guevara M, Belalcazar L (2019) CFD modeling and validation of tracer gas dispersion to evaluate self-pollution in school buses. Asian Journal of Atmospheric Environment 13(1):1–10. https://doi.org/10.5572/ajae.2019.13.1.001

    Article  CAS  Google Scholar 

  • Guevara F, Guevara M, Belalcazar L (2020) Passengers exposure to PM2.5 in self-polluted BRT-diesel operated transport system microenvironments. Asian Journal of Atmospheric Environment 14(2):105–118. https://doi.org/10.5572/ajae.2020.14.2.105

    Article  CAS  Google Scholar 

  • Guevara Luna FA (2019) Implementación y Validación de un modelo CFD para simular la dispersión de material particulado PM2.5 al interior de buses de transporte público (Universidad Nacional de Colombia - Bogota). Retrieved from http://bdigital.unal.edu.co/70775/

  • Hidalgo D (2004) TransMilenio: a high capacity - low cost bus rapid transit system developed for Bogotá, Colombia. Conference: Second International Conference on Urban Public Transportation Systems.

  • Hidalgo D (2014) Public transport integration in Bogotá and Cali, Colombia — facing transition from semi-deregulated services to full regulation citywide. Research in Transportation Economics 1(48):175

    Google Scholar 

  • Hidalgo D, Pereira L, Estupiñán N, Jiménez PL (2013) TransMilenio BRT system in Bogota, high performance and positive impact — main results of an ex-post evaluation. Research in Transportation Economics 1(39):138

    Google Scholar 

  • Imam R, Jamrah A (2012) Energy consumption and environmental impacts of bus rapid transit (BRT) systems. Jordan Journal of Civil Engineering 6

  • Institute for Transportation and Development Policy (2013) The Bus Rapid Transit Standard. Retrieved from https://www.itdp.org/library/standards-and-guides/the-bus-rapid-transit-standard/

  • Li XX, Liu CH, Leung DYC, Lam KM (2006) Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmospheric Environment 40(29):5640–5658. https://doi.org/10.1016/j.atmosenv.2006.04.055

    Article  CAS  Google Scholar 

  • Madrazo J, Clappier A, Cuesta O, Belalcázar LC, González Y (2019) Evidence of traffic-generated air pollution in Havana. Atmósfera 32(1):15–24. https://doi.org/10.20937/ATM.2019.32.01.02

    Article  CAS  Google Scholar 

  • Morales R, Galvis B, Balachandran S, Ramos-Bonilla JP, Sarmiento OL, Gallo-Murcia SM, Contreras Y (2017) Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmospheric Environment 157(1):135–145. https://doi.org/10.1016/j.atmosenv.2017.03.006

    Article  CAS  Google Scholar 

  • National Academies of Sciences, Engineering, and M., Transportation Research Board, & Transit Cooperative Research Program (2007) Bus rapid transit practitioner´s guide. In National Academies of Sciences, Engineering, and Medicine. Retrieved from https://www.nap.edu/read/23172/chapter/1

  • Palmgren F, Berkowicz R, Ziv A, Hertel O (1999) Actual car fleet emissions estimated from urban air quality measurements and street pollution models. Science of the Total Environment 1–3(235):109

    Google Scholar 

  • Secretaria Distrital de Ambiente (2010) Plan Decenal de Descontaminación del aire para Bogotá: 2010-2020

  • Secretaría Distrital de Ambiente (SDA), & Universidad Nacional de Colombia (2014) Project: Estudio de eficiencia energética, emisiones gaseosas y material particulado para vehículos de servicios zonal y toncal de la ciudad de Bogotá. Retrieved from https://www1.upme.gov.co/Hemeroteca/Memorias/Tendencias_EE_combustibles_fosiles/9_Sitp_Bogota_transporte_limpio_consorcio_express.pdf

  • T. Deng, Nelson JD (2010) Recent developments in bus rapid transit: a review of the literature. Transport Reviews: A Transnational Transdisciplinary Journal 1(31)

  • Tominaga Y, Stathopoulos T (2011) CFD modeling of pollution dispersion in a street canyon: comparison between LES and RANS. Journal of Wind Engineering and Industrial Aerodynamics 99(4):340–348. https://doi.org/10.1016/j.jweia.2010.12.005

    Article  Google Scholar 

  • Vardoulakis S, Fisher BEA, Pericleous K, Gonzalez-Flesca N (2003) Modelling air quality in street canyons: a review. Atmospheric Environment 37(2):155–182. https://doi.org/10.1016/S1352-2310(02)00857-9

    Article  CAS  Google Scholar 

  • Wöhrnschimmel H, Zuk M, Martínez-Villa GJCBC, Fernández-Bremauntz L, Rojas-Bracho A (2008) The impact of a Bus Rapid Transit system on commuters’ exposure to Benzene, CO, PM2.5 and PM10 in Mexico City. Atmospheric Environment 42(35):8203

    Article  CAS  Google Scholar 

  • Wyzga RE, Rohr AC (2015) Long-term particulate matter exposure: attributing health effects to individual PM components. Journal of the Air and Waste Management Association 65(5):523–543. https://doi.org/10.1080/10962247.2015.1020396

    Article  CAS  Google Scholar 

  • Xing Y-F, Xu Y-H, Shi M-H, Lian Y-X (2016) The impact of PM2.5 on the human respiratory system. Review Article on Pollutional Haze 8(1). https://doi.org/10.3978/j.issn.2072-1439.2016.01.19

  • Yazid AWM, Sidik NAC, Salim SM, Saqr KM (2014) A review on the flow structure and pollutant dispersion in urban street canyons for urban planning strategies. Simulation 90(8):892–916. https://doi.org/10.1177/0037549714528046

    Article  Google Scholar 

  • Zhu S, Demokritou P, Spengler J (2010) Experimental and numerical investigation of micro-environmental conditions in public transportation buses. Building and Environment 45(10):2077–2088. https://doi.org/10.1016/j.buildenv.2010.03.004

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bogota Elektrika, TransMilenio S.A., Universidad Nacional de Colombia, Grupo de Investigación en Calidad del Aire, Grupo de Investigación En Combustibles Alternativos, Energía y Protección del Medio Ambiente, and S & S (Smart & Simple Engineering S.A.S) consulting company. Thanks to UNAD-ECAPMA and the PIE entitled “Evaluación y análisis del ruido Ambiental en las Instalaciones de los CEAD (Acacias, Yopal, Cumaral y San José del Guaviare) de la Zona Amazonia Orinoquia ZAO - UNAD” for supporting this study.

Funding

Direct economical founding by Bogota Elektriká, TransMilenio S.A., and the engineering company S & S. Indirect economical founding: Universidad Nacional de Colombia, Grupo de Investigación en Calidad del Aire, COBIDES, and Grupo de Investigación En Combustibles Alternativos, Energía y Protección del Medio Ambiente.

Author information

Authors and Affiliations

Authors

Contributions

LC directed the research and designed the project and was a major contributor in writing the manuscript.

PD developed the CFD modeling and monitoring campaign.

AR developed the CFD modeling and monitoring campaign.

MG performed the project management, modeling validation, and data analysis, and also contributed to the manuscript writing.

HA performed the research scheduling and supported the measuring campaign.

NR supported the data analysis and manuscript internal revision before submission.

Corresponding author

Correspondence to Marco Andrés Guevara-Luna.

Ethics declarations

Ethics approval

Not applicable since this manuscript does not report on or involve the use of any animal or human data or tissue.

Consent to participate

Not applicable since this manuscript does not report on or involve the use of any animal or human data or tissue.

Consent for publication

Not applicable since this manuscript does not contain data from any individual person.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Changes in the energy source of BRT vehicles in Bogota’s public transportation system have the potential to improve air quality by up to 30%.

• Emission estimations, PM2.5 monitoring, and CFD modeling were implemented.

• Implementation and validation of a CFD model to simulate PM2.5 roadside levels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belalcazar-Cerón, L.C., Dávila, P., Rojas, A. et al. Effects of fuel change to electricity on PM2.5 local levels in the Bus Rapid Transit System of Bogota. Environ Sci Pollut Res 28, 68642–68656 (2021). https://doi.org/10.1007/s11356-021-14978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14978-0

Keywords

Navigation