Skip to main content

Advertisement

Log in

Oral Nigella sativa oil administration alleviates arsenic-induced redox imbalance, DNA damage, and metabolic and histological alterations in rat liver

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Arsenic, an omnipresent environmental contaminant, is regarded as a potent hepatotoxin. Nigella sativa oil (NSO) consumption has been shown to improve hepatic functions in various in vivo models of acute hepatic injury. The present study evaluates the protective efficacy of NSO against sodium arsenate (As)–induced deleterious alterations in the liver. Male Wistar rats were divided into four groups, namely, control, As, NSO, and AsNSO. After pre-treating rats in AsNSO and NSO groups with NSO (2 mL/kg bwt, orally) for 14 days, NSO treatment was further extended for 30 days, with and without As treatment (5 mg/kg bwt, orally), respectively. As induced an upsurge in serum ALT and AST activities indicating liver injury, as also confirmed by the histopathological findings. As caused significant alterations in the activities of membrane marker enzymes and carbohydrate metabolic enzymes, and in the vital components of antioxidant defense system. Marked DNA damage and hepatic arsenic accumulation were also observed in As-treated rats. Oral NSO administration ameliorated these deleterious alterations and improved overall hepatic antioxidant and metabolic status in As-treated rats. Prevention of oxidative damage could be the underlying mechanism of NSO-mediated protective effects. The results suggest that NSO could be a useful dietary supplement in the management of arsenic hepatotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Data and materials can be made available on reasonable request.

References

  • Abdel-Daim MM, Abushouk AI, Bungău SG, Bin-Jumah M, el-kott AF, Shati AA, Aleya L, Alkahtani S (2020) Protective effects of thymoquinone and diallyl sulphide against malathion-induced toxicity in rats. Environ Sci Pollut Res 27:10228–10235

    Article  CAS  Google Scholar 

  • Abdel-Daim MM, Ghazy EW (2015) Effects of Nigella sativa oil and ascorbic acid against oxytetracycline-induced hepato-renal toxicity in rabbits. Iran J Basic Med Sci 18:221–227

    Google Scholar 

  • Abdel-Daim MM, Sayed AA, Abdeen A, Aleya L, Ali D, Alkahtane AA, Alarifi S, Alkahtani S (2019) Piperine enhances the antioxidant and anti-inflammatory activities of thymoquinone against microcystin-LR-induced hepatotoxicity and neurotoxicity in mice. Oxidative Med Cell Longev 2019:1–10. https://doi.org/10.1155/2019/1309175

    Article  CAS  Google Scholar 

  • Abdel-Daim MM, Shaheen HM, Abushouk AI, Toraih EA, Fawzy MS, Alansari WS, Aleya L, Bungau S (2018) Thymoquinone and diallyl sulfide protect against fipronil-induced oxidative injury in rats. Environ Sci Pollut Res 25:23909–23916

    Article  CAS  Google Scholar 

  • Adil M, Kandhare AD, Visnagri A, Bodhankar SL (2015) Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α. Ren Fail 37:1396–1407

    Article  CAS  Google Scholar 

  • Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA, Anwar F (2013) A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac J Trop Biomed 3:337–352. https://doi.org/10.1016/S2221-1691(13)60075-1

    Article  CAS  Google Scholar 

  • Ali SN, Ansari FA, Arif H, Mahmood R (2017) Sodium chlorate induces DNA damage and DNA-protein cross-linking in rat intestine: a dose dependent study. Chemosphere 177:311–316

    Article  CAS  Google Scholar 

  • Allocati N, Masulli M, Di Ilio C, Federici L (2018) Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 7:8. https://doi.org/10.1038/s41389-017-0025-3

    Article  CAS  Google Scholar 

  • Asgary S, Ghannadi A, Dashti G, Helalat A, Sahebkar A, Najafi S (2013) Nigella sativa L. improves lipid profile and prevents atherosclerosis: evidence from an experimental study on hypercholesterolemic rabbits. J Funct Foods 5:228–234. https://doi.org/10.1016/j.jff.2012.10.011

    Article  CAS  Google Scholar 

  • Atta MS, El-Far AH, Farrag FA et al (2018) Thymoquinone attenuates cardiomyopathy in streptozotocin-treated diabetic rats. Oxidative Med Cell Longev:2018

  • Bartlett GR (1959) Colorimetric assay methods for free and phosphorylated glyceric acids. J Biol Chem 234:469–471

    Article  CAS  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19. https://doi.org/10.1097/WOX.0b013e3182439613

    Article  CAS  Google Scholar 

  • Bolt AM, Douglas RM, Klimecki WT (2010) Arsenite exposure in human lymphoblastoid cell lines induces autophagy and coordinated induction of lysosomal genes. Toxicol Lett 199:153–159. https://doi.org/10.1016/j.toxlet.2010.08.017

    Article  CAS  Google Scholar 

  • Carew MW, Naranmandura H, Shukalek CB, le XC, Leslie EM (2011) Monomethylarsenic diglutathione transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Drug Metab Dispos 39:2298–2304. https://doi.org/10.1124/dmd.111.041673

    Article  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1985) [59] Glutathione reductase. In: Methods in Enzymology. Academic Press, pp 484–490

  • Chung J-Y, Yu S-D, Hong Y-S (2014) Environmental source of arsenic exposure. J Prev Med Public Health 47:253–257

    Article  Google Scholar 

  • Collin F (2019) Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int J Mol Sci 20:2407

    Article  Google Scholar 

  • Crane RK, Sols A (1953) The association of hexokinase with particulate fractions of brain and other tissue homogenates. J Biol Chem 203:273–292

    Article  CAS  Google Scholar 

  • Ebru U, Burak U, Yusuf S, Reyhan B, Arif K, Faruk TH, Emin M, Aydın K, lhan Atilla, Semsettin S, Kemal E (2008) Cardioprotective effects of Nigella sativa oil on cyclosporine a-induced cardiotoxicity in rats. Basic Clin Pharmacol Toxicol 103:574–580. https://doi.org/10.1111/j.1742-7843.2008.00313.x

    Article  CAS  Google Scholar 

  • Elcombe CR, Rose MS, Pratt IS (1985) Biochemical, histological, and ultrastructural changes in rat and mouse liver following the administration of trichloroethylene: possible relevance to species differences in hepatocarcinogenicity. Toxicol Appl Pharmacol 79:365–376

    Article  CAS  Google Scholar 

  • Farooq N, Yusufi ANK, Mahmood R (2004) Effect of fasting on enzymes of carbohydrate metabolism and brush border membrane in rat intestine. Nutr Res 24:407–416. https://doi.org/10.1016/j.nutres.2004.01.004

    Article  CAS  Google Scholar 

  • Farooqui Z, Afsar M, Rizwan S, Khan AA, Khan F (2016) Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liver. Toxicol Rep 3:328–335. https://doi.org/10.1016/j.toxrep.2016.02.004

    Article  CAS  Google Scholar 

  • Farooqui Z, Ahmed F, Rizwan S, Shahid F, Khan AA, Khan F (2017) Protective effect of Nigella sativa oil on cisplatin induced nephrotoxicity and oxidative damage in rat kidney. Biomed Pharmacother 85:7–15. https://doi.org/10.1016/j.biopha.2016.11.110

    Article  CAS  Google Scholar 

  • Flohé L, Günzler WA (1984) [12] Assays of glutathione peroxidase. In: Methods in Enzymology. Academic Press, pp 114–120

  • Flora SJ, Chouhan S, Kannan GM et al (2008) Combined administration of taurine and monoisoamyl DMSA protects arsenic induced oxidative injury in rats. Oxidative Med Cell Longev 1:39–45

    Article  Google Scholar 

  • Flora SJS, Pachauri V (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7:2745–2788. https://doi.org/10.3390/ijerph7072745

    Article  CAS  Google Scholar 

  • Gay C, Gebicki JM (2000) A critical evaluation of the effect of sorbitol on the ferric–xylenol orange hydroperoxide assay. Anal Biochem 284:217–220. https://doi.org/10.1006/abio.2000.4696

    Article  CAS  Google Scholar 

  • Gentile F, Arcaro A, Pizzimenti S, Daga M, Paolo Cetrangolo G, Dianzani C, Lepore A, Graf M, R. J. Ames P, Barrera G, 1 Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy, 2 Department of Clinical and Biological Sciences, University of Torino, Torino, Italy, 3 Department of Drug Science and Technology, University of Torino, Torino, Italy, 4 Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy, 5 CEDOC, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal, and Department of Haematology, Dumfries Royal Infirmary, Dumfries, Scotland, UK (2017) DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity. AIMS Genet 4:103–137. https://doi.org/10.3934/genet.2017.2.103

    Article  Google Scholar 

  • Ghatak S, Biswas A, Dhali GK, Chowdhury A, Boyer JL, Santra A (2011) Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice. Toxicol Appl Pharmacol 251:59–69. https://doi.org/10.1016/j.taap.2010.11.016

    Article  CAS  Google Scholar 

  • Giri U, Iqbal M, Athar M (1996) Porphyrin-mediated photosensitization has a weak tumor promoting activity in mouse skin: possible role of in situ-generated reactive oxygen species. Carcinogenesis 17:2023–2028. https://doi.org/10.1093/carcin/17.9.2023

    Article  CAS  Google Scholar 

  • Glossmann H, Neville DM (1972) γ-Glutamyltransferase in kidney brush border membranes. FEBS Lett 19:340–344

    Article  CAS  Google Scholar 

  • Goldmann DR, Schlesinger H, Segal S (1976) Isolation and characterization of the brush border fraction from newborn rat renal proximal tubule cells. Biochimica et Biophysica Acta (BBA)-Biomembranes 419:251–260

    Article  CAS  Google Scholar 

  • Gupta R, Kannan GM, Sharma M, S. Flora SJ (2005) Therapeutic effects of Moringa oleifera on arsenic-induced toxicity in rats. Environ Toxicol Pharmacol 20:456–464. https://doi.org/10.1016/j.etap.2005.05.005

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-Transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  CAS  Google Scholar 

  • Ibrahim ZS, Ishizuka M, Soliman M et al (2008) Protection by Nigella sativa against carbon tetrachloride-induced downregulation of hepatic cytochrome P450 isozymes in rats. Jpn J Vet Res 56:119–128

    Google Scholar 

  • Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54:287–293. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  • Ijaz H, Tulain UR, Qureshi J, Danish Z, Musayab S, Akhtar MF, Saleem A, Khan KK, Zaman M, Waheed I, Khan I, Abdel-Daim M (2017) Nigella sativa (Prophetic Medicine): a review. Pak J Pharm Sci 30:229–234

    CAS  Google Scholar 

  • Ismail M, Al-Naqeeb G, Chan KW (2009) Nigella sativa thymoquinone-rich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats. Free Radic Biol Med 48:664–672. https://doi.org/10.1016/j.freeradbiomed.2009.12.002

    Article  CAS  Google Scholar 

  • Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. PHA 11:151–169. https://doi.org/10.1159/000136485

    Article  CAS  Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107

    CAS  Google Scholar 

  • Kanter M, Demir H, Karakaya C, Ozbek H (2005) Gastroprotective activity of Nigella sativa L oil and its constituent, thymoquinone against acute alcohol-induced gastric mucosal injury in rats. World J Gastroenterol 11:6662–6666. https://doi.org/10.3748/wjg.v11.i42.6662

    Article  Google Scholar 

  • Kaplan MM, Utiger RD (1978) Iodothyronine metabolism in rat liver homogenates. J Clin Invest 61:459–471

    Article  CAS  Google Scholar 

  • Kempson SA, Kim JK, Northrup TE, Knox FG, Dousa TP (1979) Alkaline phosphatase in adaptation to low dietary phosphate intake. Am J Physiol Endocrinol Metab 237:E465

    Article  CAS  Google Scholar 

  • Khan N, Jeong IS, Hwang IM, Kim JS, Choi SH, Nho EY, Choi JY, Kwak BM, Ahn JH, Yoon T, Kim KS (2013) Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS. Food Chem 141:3566–3570

    Article  CAS  Google Scholar 

  • Khundmiri SJ, Asghar M, Khan F, Salim S, Yusufi AN (2004) Effect of ischemia and reperfusion on enzymes of carbohydrate metabolism in rat kidney. J Nephrol 17:377–383

    CAS  Google Scholar 

  • Leslie EM (2012) Arsenic–glutathione conjugate transport by the human multidrug resistance proteins (MRPs/ABCCs). J Inorg Biochem 108:141–149. https://doi.org/10.1016/j.jinorgbio.2011.11.009

    Article  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, et al (1990) [49] Determination of carbonyl content in oxidatively modified proteins. In: Methods in Enzymology. Academic Press, pp 464–478

  • Liu J, Waalkes MP (2008) Liver is a target of arsenic carcinogenesis. Toxicol Sci 105:24–32

    Article  CAS  Google Scholar 

  • Lu SC (2013) GLUTATHIONE SYNTHESIS. Biochim Biophys Acta 1830:3143–3153. https://doi.org/10.1016/j.bbagen.2012.09.008

    Article  CAS  Google Scholar 

  • Majdalawieh AF, Fayyad MW (2016) Recent advances on the anti-cancer properties of Nigella sativa, a widely used food additive. J Ayurveda Integr Med 7:173–180. https://doi.org/10.1016/j.jaim.2016.07.004

    Article  Google Scholar 

  • Marí M, Colell A, Morales A, von Montfort C, Garcia-Ruiz C, Fernández-Checa JC (2010) Redox control of liver function in health and disease. Antioxid Redox Signal 12:1295–1331. https://doi.org/10.1089/ars.2009.2634

    Article  CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

    Article  CAS  Google Scholar 

  • Mehrandish R, Rahimian A, Shahriary A (2019) Heavy metals detoxification, a review of herbal compounds for chelation therapy in heavy metals toxicity. J Herbmed Pharmacol 8:69–77

    Article  CAS  Google Scholar 

  • Mohamadin AM, Sheikh B, Abd El-Aal AA et al (2010) Protective effects of Nigella sativa oil on propoxur-induced toxicity and oxidative stress in rat brain regions. Pestic Biochem Physiol 98:128–134. https://doi.org/10.1016/j.pestbp.2010.05.011

    Article  CAS  Google Scholar 

  • Mollazadeh H, Hosseinzadeh H (2014) The protective effect of Nigella sativa against liver injury: a review. Iran J Basic Med Sci 17:958–966

    Google Scholar 

  • Mukwevho E, Ferreira Z, Ayeleso A (2014) Potential role of sulfur-containing antioxidant systems in highly oxidative environments. Molecules 19:19376–19389

    Article  Google Scholar 

  • Muthumani M, Prabu SM (2012a) Silibinin potentially protects arsenic-induced oxidative hepatic dysfunction in rats. Toxicol Mech Methods 22:277–288. https://doi.org/10.3109/15376516.2011.647113

    Article  CAS  Google Scholar 

  • Muthumani M, Prabu SM (2012) Arsenic induced oxidative stress and its possible reversal by chelation therapy. Research and Reviews: A Journal of Toxicology (RRJoT) 2(2):16–37

    Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  Google Scholar 

  • Pace C, Dagda R, Angermann J (2017) Antioxidants protect against arsenic induced mitochondrial cardio-toxicity. Toxics 5:38

    Article  Google Scholar 

  • Prozialeck WC, Edwards JR, Nebert DW, Woods JM, Barchowsky A, Atchison WD (2008) The vascular system as a target of metal toxicity. Toxicol Sci 102:207–218. https://doi.org/10.1093/toxsci/kfm263

    Article  CAS  Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    Article  CAS  Google Scholar 

  • Rizwan S, Naqshbandi A, Farooqui Z, Khan AA, Khan F (2014) Protective effect of dietary flaxseed oil on arsenic-induced nephrotoxicity and oxidative damage in rat kidney. Food Chem Toxicol 68:99–107. https://doi.org/10.1016/j.fct.2014.03.011

    Article  CAS  Google Scholar 

  • Robinson PK (2015) Enzymes: principles and biotechnological applications. Essays Biochem 59:1–41

    Article  Google Scholar 

  • Rubino FM (2015) Toxicity of glutathione-binding metals: a review of targets and mechanisms. Toxics 3:20–62. https://doi.org/10.3390/toxics3010020

    Article  CAS  Google Scholar 

  • Russo GL (2009) Dietary n−6 and n−3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol 77:937–946. https://doi.org/10.1016/j.bcp.2008.10.020

    Article  CAS  Google Scholar 

  • Salem ML (2005) Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int Immunopharmacol 5:1749–1770. https://doi.org/10.1016/j.intimp.2005.06.008

    Article  CAS  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205. https://doi.org/10.1016/0003-2697(68)90092-4

    Article  CAS  Google Scholar 

  • Shahid F, Farooqui Z, Rizwan S, Abidi S, Parwez I, Khan F (2017) Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on brush border membrane enzymes, carbohydrate metabolism and antioxidant system in rat intestine. Exp Toxicol Pathol 69:299–306. https://doi.org/10.1016/j.etp.2017.02.001

    Article  CAS  Google Scholar 

  • Shahid F, Farooqui Z, Khan F (2018) Cisplatin-induced gastrointestinal toxicity: an update on possible mechanisms and on available gastroprotective strategies. Eur J Pharmacol 827:49–57

    Article  CAS  Google Scholar 

  • Singh AP, Goel RK, Kaur T (2011) Mechanisms pertaining to arsenic toxicity. Toxicol Int 18:87

    Article  Google Scholar 

  • Singh N, Kumar D, Raisuddin S, Sahu AP (2008) Genotoxic effects of arsenic: prevention by functional food-jaggery. Cancer Lett 268:325–330. https://doi.org/10.1016/j.canlet.2008.04.011

    Article  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191. https://doi.org/10.1016/0014-4827(88)90265-0

    Article  CAS  Google Scholar 

  • Sioen I, van Lieshout L, Eilander A, Fleith M, Lohner S, Szommer A, Petisca C, Eussen S, Forsyth S, Calder PC, Campoy C, Mensink RP (2017) Systematic review on n-3 and n-6 polyunsaturated fatty acid intake in European countries in light of the current recommendations-Focus on specific population groups. Ann Nutr Metab 70:39–50

    Article  CAS  Google Scholar 

  • Sumedha NC, Miltonprabu S (2015) Diallyl trisulfide ameliorates arsenic-induced hepatotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats. Hum Exp Toxicol 34:506–525

    Article  CAS  Google Scholar 

  • Susan A, Rajendran K, Sathyasivam K, Krishnan UM (2019) An overview of plant-based interventions to ameliorate arsenic toxicity. Biomed Pharmacother 109:838–852

    Article  CAS  Google Scholar 

  • Sung T-C, Huang J-W, Guo H-R (2015) Association between arsenic exposure and diabetes: a meta-analysis. In: BioMed Research International. https://www.hindawi.com/journals/bmri/2015/368087/. Accessed 7 Oct 2019

  • Tamura T, Stadtman TC (1996) A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. PNAS 93:1006–1011. https://doi.org/10.1073/pnas.93.3.1006

    Article  CAS  Google Scholar 

  • Tseng C-H (2005) Blackfoot disease and arsenic: a never-ending story. J Environ Sci Health C 23:55–74. https://doi.org/10.1081/GNC-200051860

    Article  CAS  Google Scholar 

  • Tsuneki H, Tokai E, Nakamura Y, Takahashi K, Fujita M, Asaoka T, Kon K, Anzawa Y, Wada T, Takasaki I, Kimura K, Inoue H, Yanagisawa M, Sakurai T, Sasaoka T (2015) Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice. Diabetes 64:459–470

    Article  CAS  Google Scholar 

  • Yaman İ, Balikci E (2010) Protective effects of nigella sativa against gentamicin-induced nephrotoxicity in rats. Exp Toxicol Pathol 62:183–190. https://doi.org/10.1016/j.etp.2009.03.006

    Article  Google Scholar 

  • Yousef MI, El-Demerdash FM, Radwan FM (2008) Sodium arsenite induced biochemical perturbations in rats: ameliorating effect of curcumin. Food Chem Toxicol 46:3506–3511

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support to the Department of Biochemistry from the UGC-SAP-DRS III, DST-FIST, and DBT-PURSE programs is gratefully acknowledged. TA is the recipient of a senior research fellowship from DBT (Department of Biotechnology), Government of India. CIL, Central University of Punjab, Bhatinda, is acknowledged for providing the facilities for ICP-MS studies. Department of Chemistry, Aligarh Muslim University, Aligarh, is also acknowledged for providing the facilities for GC-MS studies.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: FK and TA; performed the experiments: TA and ZF; performed the histological experiment: IP and SA; analyzed the data: FK, TA, and SR; wrote the manuscript: TA; revised the manuscript: FK

Corresponding author

Correspondence to Farah Khan.

Ethics declarations

Ethical approval

Animal experiments were permitted by the Ministry of Environment, Forests and Climate Change, Government of India, under registration no. 714/GO/Re/02/CPCSEA issued by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA) dated 29th October 2014 and approved by the Institutional Animal Ethics Committee (IAEC) of the Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India.

Consent to participate

Not applicable

Consent to publish

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, T., Rizwan, S., Farooqui, Z. et al. Oral Nigella sativa oil administration alleviates arsenic-induced redox imbalance, DNA damage, and metabolic and histological alterations in rat liver. Environ Sci Pollut Res 28, 41464–41478 (2021). https://doi.org/10.1007/s11356-021-13493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13493-6

Keywords

Navigation