Skip to main content

Advertisement

Log in

Geochemical stability of potentially toxic elements in porphyry copper-mine tailings from Chile as linked to ecological and human health risks assessment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The geochemical stability, in terms of potential mobility and derived ecological and human health risks of potentially toxic elements (PTEs), of diverse fresh and old porphyry Cu-mine tailings from Chile was assessed through an integrated methodology comprising four interrelated investigation levels: (1) chemical composition and contamination degree of tailings by PTEs, (2) mineralogical characterization by X-ray diffraction and quantitative automated mineralogy analysis by scanning electron microscopy (QEMSCAN®), (3) partitioning and potential mobility of PTEs within the tailings by a sequential extraction procedure (SEP) and leaching tests, and (4) ecological risk assessment (ERA) and human health risk assessment (HHRA). According to pollution indices, Cu, As, Pb, and Mo are most concerning PTEs present in the tailings. SEP shows that major portion of the PTEs are strongly fixed as residual fraction, and thus are poorly mobilizable and bioavailable. Among the PTEs, Cu, As, and Mo were identified as the PTEs most prone to mobilization. Leaching tests show that a low fraction of PTEs is water-leachable. Seawater enhances Mn and As leaching, while process water increases the leaching of Cu, Mn, and Mo. Phosphate particularly promotes leaching of As and Cu, whereas it does not mobilize or even immobilize Pb in the tailings. ERA suggests that mainly old tailings pose a very high potential risk for ecological receptors (PERI = 663–3356), mostly due to Cu and As. HHRA indicates that the old tailings pose higher potential non-carcinogenic and carcinogenic health risks, while the risk decreases in the order ingestion > dermal > inhalation for both children and adults. Non carcinogenic and carcinogenic HHRA points to As as the main PTE of concern via ingestion pathway in the tailings. Overall, the results revealed that particularly old tailings, containing mixed slag-tailings, pose considerable risks to the environment and human health due to potential PTEs mobilization and this aspect requires scrutiny for proper tailings management, including storage, sealing, and eventual tailings reprocessing and/or site rehabilitation after closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki estuary, Auckland, New Zealand. Environ Monit Assess 136(1–3):227–238

    CAS  Google Scholar 

  • Ahumada I, Escudero P, Ascar L, Mendoza J, Richter P (2004) Extractability of arsenic, copper, and lead in soils of a mining and agricultural zone in Central Chile. Commun Soil Sci Plant Anal 35(11–12):1615–1634

    Article  CAS  Google Scholar 

  • Al-Abed SR, Hageman PL, Jegadeesan G, Madhavan N, Allen D (2006) Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste. Sci Total Environ 364(1–3):14–23

    Article  CAS  Google Scholar 

  • Alarcón R, Gaviria J, Dold B (2014) Liberation of adsorbed and co-precipitated arsenic from jarosite, schwertmannite, ferrihydrite, and goethite in seawater. Minerals 4(3):603–620

    Article  CAS  Google Scholar 

  • Alcalde J, Kelm U, Vergara D (2018) Historical assessment of metal recovery potential from old mine tailings: a study case for porphyry copper tailings, Chile. Miner Eng 127:334–338

    Article  CAS  Google Scholar 

  • Alcalde J, Edraki M, Jerez O, Kelm U, Rubinos DA (2020) Assessment of mineralogical, textural, and water chemistry changes during long-distance tailings-slurry transport. Mine Water and the Environment 39(1):135–149.

  • Alta Ley (2016) Programa Nacional de Minería Alta Ley. From Copper to Innovation. Mining Technology Roadmap 2035. Coordinated and edited by Fundación Chile. Santiago, Chile. https://corporacionaltaley.cl/en/roadmap/

  • Anju M, Banerjee DK (2010) Comparison of two sequential extraction procedures for heavy metal partitioning in mine tailings. Chemosphere 78(11):1393–1402

    Article  CAS  Google Scholar 

  • Arenas-Lago D, Andrade ML, Lago-Vila M, Rodríguez-Seijo A, Vega FA (2014) Sequential extraction of heavy metals in soils from a copper mine: distribution in geochemical fractions. Geoderma 230:108–118

    Article  CAS  Google Scholar 

  • Atapour H, Aftabi A (2007) The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: implications for exploration and the environment. J Geochem Explor 93(1):47–65

    Article  CAS  Google Scholar 

  • Barcelos DA, Pontes FV, da Silva FA, Castro DC, dos Anjos NO, Castilho ZC (2020) Gold mining tailing: environmental availability of metals and human health risk assessment. J Hazard Mater 122721

  • Barraza F, Maurice L, Uzu G, Becerra S, López F, Ochoa-Herrera V, Ruales J, Schreck E (2018) Distribution, contents and health risk assessment of metal(loid)s in small-scale farms in the Ecuadorian Amazon: an insight into impacts of oil activities. Sci Total Environ 622-623:106–120

    Article  CAS  Google Scholar 

  • Brough CP, Warrender R, Bowell RJ, Barnes A, Parbhakar-Fox A (2013) The process mineralogy of mine wastes. Miner Eng 52:125–135

    Article  CAS  Google Scholar 

  • Bruce S, Noller B, Matanitobua V, Ng J (2007) In vitro physiologically based extraction test (PBET) and bioaccessibility of arsenic and lead from various mine waste materials. J Toxic Environ Health A 70(19):1700–1711

    Article  CAS  Google Scholar 

  • Burke IT, Mayes WM, Peacock CL, Brown AP, Jarvis AP, Gruiz K (2012) Speciation of arsenic, chromium, and vanadium in red mud samples from the Ajka spill site, Hungary. Environ Sci Technol 46:3085–3092

    Article  CAS  Google Scholar 

  • Cai LM, Wang QS, Luo J, Chen LG, Zhu RL, Wang S, Tang CH (2019) Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China. Sci Total Environ 650:725–733

    Article  CAS  Google Scholar 

  • Cao S, Duan X, Zhao X, Ma J, Dong T, Huang N, Sun C, He B, Wei F (2014) Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Sci Total Environ 472:1001–1009

    Article  CAS  Google Scholar 

  • Caraballo MA, Serna A, Macías F, Pérez-López R, Ruiz-Cánovas C, Richter P, Becerra-Herrera M (2018) Uncertainty in the measurement of toxic metals mobility in mining/mineral wastes by standardized BCR® SEP. J Hazard Mater 360:587–593

    Article  CAS  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment) (1999) Canadian water quality guidelines for the protection of aquatic life. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the environment, Winnipeg. CWQG (http://ceqg-rcqe.ccme.ca/en/index.html#void)

  • CCME (Canadian Council of Ministers of the Environment) (2007) Canadian soil quality guidelines for the protection of environmental and human health. Summary Tables, CCME Ottawa, Canada. http://st-ts.ccme.ca/en/index.html, Accessed date: April 2020

  • Cisternas LA, Gálvez ED (2018) The use of seawater in mining. Miner Process Extr Metall Rev 39(1):18–33. https://doi.org/10.1080/08827508.2017.1389729

    Article  CAS  Google Scholar 

  • Cortés S, Lagos LDCM, Burgos S, Adaros H, Ferreccio C (2016) Urinary metal levels in a Chilean community 31 years after the dumping of mine tailings. Journal of Health and Pollution 6(10):19–27

    Article  Google Scholar 

  • Courtin-Nomade A, Bril H, Neel C, Lenain JF (2003) Arsenic in iron cements developed within tailings of a former metalliferous mine—Enguialès, Aveyron, France. Appl Geochem 18(3):395–408

    Article  CAS  Google Scholar 

  • Cox SF, Rollinson G, McKinley JM (2017) Mineralogical characterisation to improve understanding of oral bioaccessibility of Cr and Ni in basaltic soils in Northern Ireland. J Geochem Explor 183:166–177

    Article  CAS  Google Scholar 

  • Cropp A, Goodall W (2017) The influence of rock texture on mineral processing. In: ABN : 51 118 344 602. Ltd, MinAssist Pty

    Google Scholar 

  • Decreto 46 del 17/01/2003. Establece Norma de emisión de residuos líquidos a aguas subterráneas Id 206883. Ministerio Secretaría General de la Presidencia. Gobierno de Chile

  • Decreto 90 del 7/03/2001. Establece Norma de emisión para la regulación de contaminantes asociados a las descargas de residuos líquidos a aguas marinas y continentales superficiales. Id 182637Ministerio Secretaría General de la Presidencia. Gobierno de Chile

  • Devi P, Saroha AK (2014) Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour Technol 162:308–315

    Article  CAS  Google Scholar 

  • DeVolder PS, Brown SL, Hesterberg D, Pandya K (2003) Metal bioavailability and speciation in a wetland tailings repository amended with biosolids compost, wood ash, and sulfate. J Environ Qual 32(3):851–864

    Article  CAS  Google Scholar 

  • DeVore CL, Rodriguez-Freire L, Mehdi-Ali A, Ducheneaux C, Artyushkova K, Zhou Z et al (2019) Effect of bicarbonate and phosphate on arsenic release from mining-impacted sediments in the Cheyenne river watershed, South Dakota, USA. Environ Sci Process Impacts 21(3):456–468

    Article  CAS  Google Scholar 

  • Dold B (2003) Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J Geochem Explor 80(1):55–68

    Article  CAS  Google Scholar 

  • Dold B, Fontboté L (2002) A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu–Au deposits from the Punta del Cobre belt, northern Chile. Chem Geol 189(3–4):135–163

    Article  CAS  Google Scholar 

  • Douay F, Pelfrene A, Planque J, Fourrier H, Richard A, Roussel H, Girondelot B (2013) Assessment of potential health risk for inhabitants living near a former lead smelter. Part 1: metal concentrations in soils, agricultural crops, and homegrown vegetables. Environ Monit Assess 185(5):3665–3680

    Article  CAS  Google Scholar 

  • Edraki M, Baumgartl T, Manlapig E, Bradshaw D, Franks DM, Moran CJ (2014) Designing mine tailings for better environmental, social and economic outcomes: a review of alternative approaches. J Clean Prod 84:411–420

    Article  Google Scholar 

  • EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on Lead in Food. EFSA Journal (2010) 8(4):1570. [151 pp.]. https://doi.org/10.2903/j.efsa.2010.1570

  • Elert M, Bonnard R, Jones C, Schoof RA, Swartjes FA (2011) Human exposure pathways. In: Dealing with contaminated sites: from theory towards practical application. Springer Netherlands, Dordrecht, pp 455–515. https://doi.org/10.1007/978-90-481-9757-6_11

    Chapter  Google Scholar 

  • Elliott H, Herzig LM (1999) Oxalate extraction of Pb and Zn from polluted soils: solubility limitations. Journal of Soil Contamination 8(1):105–116

    Article  CAS  Google Scholar 

  • Ettler V, Piantone P, Touray JC (2003) Mineralogical control on inorganic contaminant mobility in leachate from lead-zinc metallurgical slag: experimental approach and long- term assessment. Mineral Mag 67(6):1269–1283

    Article  CAS  Google Scholar 

  • Falagán C, Grail BM, Johnson DB (2017) New approaches for extracting and recovering metals from mine tailings. Miner Eng 106:71–78

    Article  CAS  Google Scholar 

  • Forghani G, Mokhtari AR, Kazemi GA, Fard MD (2015) Total concentration, speciation and mobility of potentially toxic elements in soils around a mining area in Central Iran. Geochemistry 75(3):323–334

    Article  CAS  Google Scholar 

  • Forghani G, Kelm U, Mazinani V (2019) Spatial distribution and chemical partitioning of potentially toxic elements in soils around Khatoon-Abad Cu smelter, SE Iran. J Geochem Explor 196:66–80

    Article  CAS  Google Scholar 

  • Foster AL, Brown GE, Tingle TN, Parks GA (1998) Quantitative arsenic speciation in mine tailings using X-ray absorption spectroscopy. Am Mineral 83(5–6):553–568

    Article  CAS  Google Scholar 

  • Frascoli F, Hudson-Edwards KA (2018) Geochemistry, mineralogy and microbiology of molybdenum in mining-affected environments. Minerals 8(2):42

    Article  CAS  Google Scholar 

  • García-Carmona M, Romero-Freire A, Aragón MS, Garzón FM, Peinado FM (2017) Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic. J Environ Manag 191:228–236

    Article  CAS  Google Scholar 

  • Gee C, Ramsey MH, Maskall J, Thornton I (1997) Mineralogy and weathering processes in historical smelting slags and their effect on the mobilisation of lead. J Geochem Explor 58(2–3):249–257

    Article  CAS  Google Scholar 

  • Ghadiri M, Harrison ST, Fagan-Endres MA (2020) Quantitative X-ray μCT measurement of the effect of ore characteristics on non-surface mineral grain leaching. Minerals 10(9):746. https://doi.org/10.3390/min10090746

    Article  CAS  Google Scholar 

  • Ghorbani Y, Kuan SH (2017) A review of sustainable development in the Chilean mining sector: past, present and future. Int J Min Reclam Environ 31(2):137–165

    Article  Google Scholar 

  • Gleyzes C, Tellier S, Astruc M (2002) Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. TrAC Trends Anal Chem 21(6–7):451–467

    Article  CAS  Google Scholar 

  • Gräfe M, Landers M, Tappero R, Austin P, Gan B, Grabsch A, Klauber C (2011) Combined application of QEM-SEM and hard X-ray microscopy to determine mineralogical associations and chemical speciation of trace metals. J Environ Qual 40(3):767–783

    Article  CAS  Google Scholar 

  • Graupner T, Kassahun A, Rammlmair D, Meima JA, Kock D, Furche M, Fiege A, Schippers A, Melcher F (2007) Formation of sequences of cemented layers and hardpans within sulfide-bearing mine tailings (mine district Freiberg, Germany). Appl Geochem 22(11):2486–2508

    Article  CAS  Google Scholar 

  • Håkanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14(8):975–1001

    Article  Google Scholar 

  • Hass A, Fine P (2010) Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materials—a critical review. Crit Rev Environ Sci Technol 40(5):365–399

    Article  CAS  Google Scholar 

  • Hosseini SM, Kamranjam M, Brewer R, Rezazadeh M, Ghorbanli M (2018) Environmental risks posed by heavy metal contamination from mine waste: case study from Northwest Iran. Human and Ecological Risk Assessment: An International Journal 24(6):1532–1549

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer) (2011) Agents classified by the IARC monographs; Volumes 1–128. https://monographs.iarc.fr/agents-classified-by-the-iarc/ Last updated 2020-12-02 2.39pm (CEST) Accessed 1 Apr 2020 10:00pm

  • Integrated Risk Information System (IRIS) (2020) Environmental protection agency, Advanced research. U.S. https://cfpub.epa.gov/ncea/iris/search/index.cfm?keyword

  • Jeldres RI, Forbes L, Cisternas LA (2016) Effect of seawater on sulfide ore flotation: a review. Miner Process Extr Metall Rev 37(6):369–384. https://doi.org/10.1080/08827508.2016.1218871

    Article  CAS  Google Scholar 

  • Kabala C, Singh BR (2001) Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30(2):485–492

    Article  CAS  Google Scholar 

  • Karaca O, Cameselle C, Reddy KR (2017) Acid pond sediment and mine tailings contaminated with metals: physicochemical characterization and electrokinetic remediation. Environ Earth Sci 76(12):408

    Article  CAS  Google Scholar 

  • Kastury F, Smith E, Doelsch E, Lombi E, Donnelley M, Cmielewski PL et al (2019) In vitro, in vivo, and spectroscopic assessment of lead exposure reduction via ingestion and inhalation pathways using phosphate and iron amendments. Environ Sci Technol 53(17):10329–10341

    Article  CAS  Google Scholar 

  • Kelm U, Helle S, Matthies R, Morales A (2009) Distribution of trace elements in soils surrounding the El Teniente porphyry copper deposit, Chile: the influence of smelter emissions and a tailings deposit. Environ Geol 57(2):365–376

    Article  CAS  Google Scholar 

  • Kelm U, Avendaño, M, Balladares E, Helle S, Karlsson T, & Pincheira M (2014) The use of water-extractable Cu, Mo, Zn, As, Pb concentrations and automated mineral analysis of flue dust particles as tools for impact studies in topsoils exposed to past emissions of a Cu-smelter. Geochemis 74(3):365–373.

  • Kelm U, Alcalde J, Rubinos D, Edraki M (2018) Mineralogical and geochemical controls on tailings transport: a case study from Chile. Planning for Closure 2018: 2nd international congress on planning for closure of mining operations, Santiago (Chile), November 7-9 2018

  • Khelifi F, Caporale AG, Hamed Y, Adamo P (2020) Bioaccessibility of potentially toxic metals in soil, sediments and tailings from a North Africa phosphate-mining area: insight into human health risk assessment. J Environ Manag 111634

  • Kim EJ, Yoo JC, Baek K (2014) Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Environ Pollut 186:29–35

    Article  CAS  Google Scholar 

  • Klinck BA, Hawkings MP, Moore Y, Ngorima C, Kelm U, Palumbo B, Lee JS (2002) The environmental impact of metalliferous mining: Korea, Chile and Zimbabwe case studies. British Geological Survey, Commissioned Report CR/02/190N

  • Kowalska JB, Mazurek R, Gąsiorek M, Zaleski T (2018) Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–a review. Environ Geochem Health 40(6):2395–2420

    Article  CAS  Google Scholar 

  • Kraus U, Wiegand J (2006) Long-term effects of the Aznalcóllar mine spill—heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain). Sci Total Environ 367(2–3):855–871

    Article  CAS  Google Scholar 

  • Kumar V, Sharma A, Kaur P, Sidhu GPS, Bali AS, Bhardwaj R, ...Cerda A (2019). Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art. Chemosphere 216:449–462

  • Lam EJ, Gálvez ME, Cánovas M, Montofré IL, Rivero D, Faz A (2016) Evaluation of metal mobility from copper mine tailings in northern Chile. Environ Sci Pollut Res 23(12):11901–11915

  • Lam EJ, Montofré IL, Álvarez FA, Gaete NF, Poblete DA, Rojas RJ (2020) Methodology to prioritize Chilean tailings selection, according to their potential risks. Int J Environ Res Public Health 17(11):3948

    Article  Google Scholar 

  • Li J, Li K, Cave M, Li HB, Ma LQ (2015a) Lead bioaccessibility in 12 contaminated soils from China: correlation to lead relative bioavailability and lead in different fractions. J Hazard Mater 295:55–62

    Article  CAS  Google Scholar 

  • Li SW, Li J, Li HB, Naidu R, Ma LQ (2015b) Arsenic bioaccessibility in contaminated soils: coupling in vitro assays with sequential and HNO3 extraction. J Hazard Mater 295:145–152

    Article  CAS  Google Scholar 

  • Li H-B, Li M-Y, Zhao D, Li J, Li S-W, Xiang P, Juhasz AL, Ma LQ (2020) Arsenic, lead, and cadmium bioaccessibility in contaminated soils: measurements and validations. Crit Rev Environ Sci Technol 50:13,1303–13,1338. https://doi.org/10.1080/10643389.2019.1656512

    Article  CAS  Google Scholar 

  • Liang S, Guan DX, Ren JH, Zhang M, Luo J, Ma LQ (2014) Effect of aging on arsenic and lead fractionation and availability in soils: coupling sequential extractions with diffusive gradients in thin-films technique. J Hazard Mater 273:272–279

    Article  CAS  Google Scholar 

  • Lindsay MB, Moncur MC, Bain JG, Jambor JL, Ptacek CJ, Blowes DW (2015) Geochemical and mineralogical aspects of sulfide mine tailings. Appl Geochem 57:157–177

    Article  CAS  Google Scholar 

  • Lombi E, Wenzel WW, Sletten RS (1999) Arsenic adsorption by soils and iron-oxide-coated sand: kinetics and reversibility. J Plant Nutr Soil Sci 162(4):451–456

    Article  CAS  Google Scholar 

  • Lottermoser BG (2002) Mobilization of heavy metals from historical smelting slag dumps, North Queensland, Australia. Mineral Mag 66(4):475–490

    Article  CAS  Google Scholar 

  • Ma W, Tai L, Qiao Z, Zhong L, Wang Z, Fu K, Chen G (2018) Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator: a case study in North China. Sci Total Environ 631:348–357

    Article  CAS  Google Scholar 

  • Margui E, Salvadó V, Queralt I, Hidalgo M (2004) Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes. Anal Chim Acta 524(1–2):151–159

    Article  CAS  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2:1021

    Article  Google Scholar 

  • Mehta N, Cocerva T, Cipullo S, Padoan E, Dino GA, Ajmone-Marsan F et al (2019) Linking oral bioaccessibility and solid phase distribution of potentially toxic elements in extractive waste and soil from an abandoned mine site: case study in Campello Monti, NW Italy. Sci Total Environ 651:2799–2810

    Article  CAS  Google Scholar 

  • Molina RM, Schaider LA, Donaghey TC, Shine JP, Brain JD (2013) Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc. Environ Pollut 182:217–224

    Article  CAS  Google Scholar 

  • Monneron, M., Soubrand, M., Joussein, E., Courtin-Nomade, A., Jubany, I., Casas, S., ... & Martínez-Martínez, S. (2020) Investigating the relationship between speciation and oral/lung bioaccessibility of a highly contaminated tailing: contribution in health risk assessment. Environ Sci Pollut Res, 1–17

  • Monsalve SM, Martínez L, Vásquez KY, Orellana SA, Vergara JK, Mateo MM et al (2018) Trace element contents in fine particulate matter (PM 2.5) in urban school microenvironments near a contaminated beach with mine tailings, Chañaral, Chile. Environ Geochem Health 40(3):1077–1091

    Article  CAS  Google Scholar 

  • Mudd G, Boger DV (2013) The ever growing case for paste and thickened tailings e towards more sustainable mine waste management. AusIMM Bulletin 2:56–59

    Google Scholar 

  • Munksgaard NC, Lottermoser BG (2011) Fertilizer amendment of mining-impacted soils from Broken Hill, Australia: fixation or release of contaminants? Water Air Soil Pollut 215(1–4):373–397

    Article  CAS  Google Scholar 

  • Munksgaard NC, Lottermoser BG (2013) Phosphate amendment of metalliferous tailings, Cannington Ag–Pb–Zn mine, Australia: implications for the capping of tailings storage facilities. Environ Earth Sci 68(1):33–44

    Article  CAS  Google Scholar 

  • Munksgaard NC, Lottermoser BG, Blake K (2012) Prolonged testing of metal mobility in mining-impacted soils amended with phosphate fertilisers. Water Air Soil Pollut 223(5):2237–2255

    Article  CAS  Google Scholar 

  • Nannoni F, Protano G, Riccobono F (2011) Fractionation and geochemical mobility of heavy elements in soils of a mining area in northern Kosovo. Geoderma 16:63–73

    Article  CAS  Google Scholar 

  • National Environment Protection (Assessment of Site Contamination) Measure 1999 (2013) http://www.nepc.gov.au/nepms/assessment-site-contamination

  • Nordberg M, Cherian MG (2013) Biological responses of elements. In: Selinus O, Alloway B, Centeno J, Finkelman R, Fuge R, Lindh U, Smedley P (eds) Essentials of medical geology, revised edition. Springer Science & Business Media 808 p

  • Peinado FM, Romero-Freire A, Fernández IG, Aragón MS, Ortiz-Bernad I, Torres MS (2015) Long-term contamination in a recovered area affected by a mining spill. Sci Total Environ 514:219–223

    Article  CAS  Google Scholar 

  • Pérez-López R, Álvarez-Valero AM, Nieto JM, Sáez R, Matos JX (2008) Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos mine (Iberian Pyrite Belt). Appl Geochem 23(12):3452–3463

    Article  CAS  Google Scholar 

  • Perin G, Craboledda L, Lucchese M, Cirillo R, Dotta L, Zanetta ML, Oro AA (1985) Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. In: Lakkas TD (ed) Heavy metals in the environment, vol 2. CEP Consultants, Edinburgh, pp 454–456

    Google Scholar 

  • Pillay K, Von Blottnitz H, Petersen J (2003) Ageing of chromium (III)-bearing slag and its relation to the atmospheric oxidation of solid chromium (III)-oxide in the presence of calcium oxide. Chemosphere 52(10):1771–1779

    Article  CAS  Google Scholar 

  • Potysz A, van Hullebusch ED, Kierczak J, Grybos M, Lens PN, Guibaud G (2015) Copper metallurgical slags–current knowledge and fate: a review. Crit Rev Environ Sci Technol 45(22):2424–2488

    Article  CAS  Google Scholar 

  • Ramirez M, Massolo S, Frache R, Correa JA (2005) Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Mar Pollut Bull 50(1):62–72

    Article  CAS  Google Scholar 

  • Rao CRM, Sahuquillo A, Sánchez JL (2008) A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water Air Soil Pollut 189(1–4):291–333

    Article  CAS  Google Scholar 

  • Reyes A, Thiombane M, Panico A, Daniele L, Lima A, Di Bonito M, De Vivo B (2021) Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environ Geochem Health 42(8):2573–2594

    Article  CAS  Google Scholar 

  • Roebbert Y, Rabe K, Lazarov M, Schuth S, Schippers A, Dold B, Weyer S (2018) Fractionation of Fe and cu isotopes in acid mine tailings: modification and application of a sequential extraction method. Chem Geol 493:67–79

    Article  CAS  Google Scholar 

  • Romero-Freire A, Fernández IG, Torres MS, Garzón FM, Peinado FM (2016) Long-term toxicity assessment of soils in a recovered area affected by a mining spill. Environ Pollut 208:553–561

    Article  CAS  Google Scholar 

  • Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30(2):422–430

    Article  CAS  Google Scholar 

  • Saavedra-Mella F, Liu Y, Southam G, Huang L (2019) Phosphate treatment alleviated acute phytotoxicity of heavy metals in sulfidic Pb-Zn mine tailings. Environ Pollut 250:676–685

    Article  CAS  Google Scholar 

  • Scheckel KG, Impellitteri CA, Ryan JA, McEvoy T (2003) Assessment of a sequential extraction procedure for perturbed lead-contaminated samples with and without phosphorus amendments. Environ Sci Technol 37(9):1892–1898

    Article  CAS  Google Scholar 

  • SERNAGEOMIN (Servicio Nacional de Geología y Minería) (2020) Anuario de la Minería de Chile 2019. Servicio Nacional de Geología y Minería, 283 P. Santiago

  • Smuda J, Dold B, Spangenberg JE, Pfeifer HR (2008) Geochemistry and stable isotope composition of fresh alkaline porphyry copper tailings: implications on sources and mobility of elements during transport and early stages of deposition. Chem Geol 256(1–2):62–76

    Article  CAS  Google Scholar 

  • Sundaray SK, Nayak BB, Lin S, Bhatta D (2011) Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi basin, India. J Hazard Mater 186(2–3):1837–1846

    Article  CAS  Google Scholar 

  • Tang XY, Zhu YG, Shan XQ, McLaren R, Duan J (2007) The ageing effect on the bioaccessibility and fractionation of arsenic in soils from China. Chemosphere 66(7):1183–1190

    Article  CAS  Google Scholar 

  • Tapia J, Davenport J, Townley B, Dorador C, Schneider B, Tolorza V, von Tümpling W (2018) Sources, enrichment, and redistribution of as, cd, cu, Li, Mo, and Sb in the northern Atacama region, Chile: implications for arid watersheds affected by mining. J Geochem Explor 185:33–51

    Article  CAS  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33(2):241–265

    Article  Google Scholar 

  • Tessier A, Campbell PG, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851

    Article  CAS  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen 33(1):566–575

    Article  Google Scholar 

  • Tuhý M, Hrstka T, Ettler V (2020) Automated mineralogy for quantification and partitioning of metal (loid) s in particulates from mining/smelting-polluted soils. Environ Pollut 266:115118

    Article  CAS  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72(2):175–192

    Article  CAS  Google Scholar 

  • USEPA (1989) Risk assessment guidance for superfund. In: EPA/540/1–89/002, http://www.epa.gov.

  • USEPA (2014) Toxic and Priority Pollutants Under the Clean Water Act. https://www.epa.gov/eg/toxic-and_priority-pollutants-under-clean-water-act

  • USEPA (2020) Risk assessment. Regional Screening Levels (RSLs)-Generic tables. Summary tables https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

  • Valente T, Grande JA, De la Torre ML, Gomes P, Santisteban M, Borrego J, Braga MS (2015) Mineralogy and geochemistry of a clogged mining reservoir affected by historical acid mine drainage in an abandoned mining area. J Geochem Explor 157:66–76

    Article  CAS  Google Scholar 

  • Vázquez S, Moreno E, Carpena RO (2008) Bioavailability of metals and as from acidified multicontaminated soils: use of white lupin to validate several extraction methods. Environ Geochem Health 30(2):193–198

    Article  CAS  Google Scholar 

  • Waseem A, Arshad J, Iqbal F, Saffad A, Mehmood Z, Murtaza G (2014) Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables. Biomed Res Int 2014:1–29

    Article  CAS  Google Scholar 

  • Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436(2):309–323

    Article  CAS  Google Scholar 

  • Wu WH, Xie ZM, Xu JM, Wang F, Shi JC, Zhou RB, Jin ZF (2013) Immobilization of trace metals by phosphates in contaminated soil near lead/zinc mine tailings evaluated by sequential extraction and TCLP. J Soils Sediments 13(8):1386–1395

    Article  CAS  Google Scholar 

  • Xie XD, Min XB, Chai LY, Tang CJ, Liang YJ, Li M, Ke Y, Chen J, Wang Y (2013) Quantitative evaluation of environmental risks of flotation tailings from hydrothermal sulfidation–flotation process. Environ Sci Pollut Res 20(9):6050–6056

    Article  CAS  Google Scholar 

  • Yang J, Tang Y, Yang K, Rouff AA, Elzinga EJ, Huang JH (2014) Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site. J Hazard Mater 264:498–504

    Article  CAS  Google Scholar 

  • Yang Q, Li Zh LX, Duan Q, Huang L, Bi J (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ 642:690–700

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the GEA (UdeC) laboratory staff, especially to Evelyn Novoa and Sebastián Benedetti, their contribution in the execution of SEP extractions and element analyses. The authors would like to acknowledge the financial support to SMI-ICE-Chile provided by the Chilean Government through the International Centre of Excellence program administered by CORFO as Project Number 13CEI2-21844.

Funding

Financial support to SMI-ICE-Chile provided by the Chilean Government through the International Centre of Excellence program administered by CORFO as Project Number 13CEI2–21844.

Author information

Authors and Affiliations

Authors

Contributions

DAR: conceptualization, methodology, investigation, data curation, writing—original draft; writing—review and editing; visualization. ÓJ: formal analysis, Review and editing. GF: formal analysis, investigation, writing—review and editing. ME: writing—review and editing, supervision, funding acquisition. UK: conceptualization, writing—review and editing, resources, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to David A. Rubinos.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Kitae Baek

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1.88 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubinos, D.A., Jerez, Ó., Forghani, G. et al. Geochemical stability of potentially toxic elements in porphyry copper-mine tailings from Chile as linked to ecological and human health risks assessment. Environ Sci Pollut Res 28, 57499–57529 (2021). https://doi.org/10.1007/s11356-021-12844-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12844-7

Keywords

Navigation