Skip to main content
Log in

Fertilizer Amendment of Mining-Impacted Soils from Broken Hill, Australia: Fixation or Release of Contaminants?

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of the study was to appraise various types of phosphate fertilizers (bone meal, superphosphate, triple superphosphate, and potassium orthophosphate) for immobilizing metals and metalloids in mining-impacted soils from Broken Hill, Australia. Soils were rich in metals (Pb, Zn, Cu, and Cd) and metalloids (As and Sb) which were mainly contained in minor to trace amounts of coronadite [PbMn8O16], kintoreite [PbFe3(PO4)2(OH,H2O)6], Pb, and Zn sulfides and sulfates (possibly sphalerite, galena, and anglesite) as well as in unidentified soluble metal-bearing phases. Phosphate stabilization experiments were conducted as kinetic column leaching experiments, and chemical and mineralogical changes were assessed using elemental, sulfur isotope, and XRD analyses as well as electron microprobe phase mapping. The application of phosphate fertilizer to the metal-contaminated topsoils led to mineralogical changes, including the formation of secondary metal-bearing phosphates. The elemental concentrations of leachates were used as a criterion to assess the performance of phosphate treatments. Potassium orthophosphate fertilizer was the most effective amendment for Cd stabilization; superphosphate and triple superphosphate fertilizers were the most effective amendments for Pb stabilization. By contrast, the release of As, Cu, Mn, Sb, and Zn were not significantly suppressed, and in several cases, increased, using bone meal, superphosphate, triple superphosphate, and potassium orthophosphate amendments. This study indicates that in situ phosphate stabilization of mining-impacted soils at Broken Hill would most likely be a complex and impractical undertaking in residential areas due to the risk of substantial metal, metalloid, phosphate, and sulfate release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alam, M. G. M., Tokunaga, S., & Maekawa, T. (2001). Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate. Chemosphere, 43, 1035–1041.

    Article  CAS  Google Scholar 

  • Basta, N. T., & McGowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 127, 73–82.

    Article  CAS  Google Scholar 

  • Basta, N. T., Gradwohl, R., Snethen, K. L., & Schroder, J. L. (2001). Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. Journal of Environmental Quality, 30, 1222–1230.

    Article  CAS  Google Scholar 

  • Bierlein, F. P., Ashley, P. M., & Seccombe, P. K. (1996). Origin of hydrothermal Cu-Zn-Pb mineralisation in the Olary Block, South Australia: evidence from fluid inclusions and sulphur isotopes. Precambrian Research, 79, 281–305.

    Article  CAS  Google Scholar 

  • Bosso, S. T., Enzweiler, J., & Angelica, R. S. (2008). Lead bioaccessibility in soil and mine wastes after immobilization with phosphate. Water, Air, and Soil Pollution, 195, 257–273.

    Article  CAS  Google Scholar 

  • Brown, S., Chaney, R., Hallfrisch, J., Ryan, J. A., & Berti, W. R. (2004). In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium. Journal of Environmental Quality, 33, 522–531.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., Chen, M., Singh, S. P., & Harris, W. G. (2002). Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environmental Science & Technology, 36, 5296–5304.

    Article  CAS  Google Scholar 

  • Cao, R. X., Ma, L. Q., Chen, M., Singh, S. P., & Harris, W. G. (2003). Phosphate-induced metal immobilization in a contaminated site. Environmental Pollution, 122, 19–28.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., Rhue, D. R., & Appel, C. S. (2004). Mechanisms of lead, copper, and zinc retention by phosphate rock. Environmental Pollution, 131, 435–444.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., Singh, S. P., & Zhou, Q. (2008). Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions. Environmental Pollution, 152, 184–192.

    Article  CAS  Google Scholar 

  • Cao, X., Wahbi, A., Ma, L., Li, B., & Yang, Y. (2009). Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardous Materials, 164, 555–564.

    Article  CAS  Google Scholar 

  • Chen, M., Ma, L. Q., Singh, S. P., Cao, R. X., & Melamed, R. (2003a). Field demonstration of in situ immobilization of soil Pb using P amendments. Advances in Environmental Research, 8, 93–102.

    Article  CAS  Google Scholar 

  • Chen, S. B., Zhu, Y. G., & Ma, Y. B. (2003b). The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Journal of Hazardous Materials, B134, 74–79.

    Google Scholar 

  • Chrysochoou, M., Dermatas, D., & Grubb, D. G. (2007). Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate. Journal of Hazardous Materials, 144, 1–14.

    Article  CAS  Google Scholar 

  • Clough, R., Evans, P., Catterick, T., & Hywel Evans, E. (2006). δ 34S measurements of sulphur by multicollector inductively coupled plasma mass spectrometry. Analytical Chemistry, 78, 6126–6132.

    Article  CAS  Google Scholar 

  • Cotter-Howells, J., & Caporn, S. (1996). Remediation of contaminated land by formation of heavy metal phosphates. Applied Geochemistry, 11, 335–342.

    Article  CAS  Google Scholar 

  • Dermatas, D., Chrysochoou, M., Grubb, D. G., & Xu, X. (2008). Phosphate treatment of firing range soils: lead fixation or phosphorus release? Journal of Environmental Quality, 37, 47–56.

    Article  CAS  Google Scholar 

  • Eighmy, T. T., Crannell, B. S., Butler, L. G., Cartledge, F. K., Emery, E. F., Oblas, D., et al. (1997). Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate. Environmental Science and Technology, 31, 3330–3338.

    Article  CAS  Google Scholar 

  • Harris, D. L., & Lottermoser, B. G. (2006a). Evaluation of phosphate fertilizers for ameliorating acid mine waste. Applied Geochemistry, 21, 1216–1225.

    Article  CAS  Google Scholar 

  • Harris, D. L., & Lottermoser, B. G. (2006b). Phosphate stabilization of polyminerallic mine wastes. Mineralogical Magazine, 70, 1–13.

    Article  CAS  Google Scholar 

  • Hettiarachchi, G. M., & Pierzynski, G. M. (2002). In situ stabilization of soil lead using phosphorus and manganese oxide: influence of plant growth. Journal of Environmental Quality, 31, 564–572.

    Article  CAS  Google Scholar 

  • Hettiarachchi, G. M., & Pierzynski, G. M. (2004). Soil lead bioaccessibility and in situ remediation of lead-contaminated soils: a review. Environmental Progress, 23, 78–93.

    Article  CAS  Google Scholar 

  • Hettiarachchi, G. M., Pierzynski, G. M., & Ransom, M. D. (2001). In situ stabilization of soil lead using phosphorus. Journal of Environmental Quality, 30, 1214–1221.

    Article  CAS  Google Scholar 

  • Hodson, M. E., Valsami-Jones, E., & Cotter-Howells, J. D. (2000). Bonemeal additions as a remediation treatment for metal contaminated soils. Environmental Science & Technology, 34, 3501–3507.

    Article  CAS  Google Scholar 

  • Hodson, M. E., Valsami-Jones, E., Cotter-Howells, J. D., Dubbin, W. E., Kemp, A. J., Thornton, I., et al. (2001). Effect of bone meal (calcium phosphate) amendments on metal release from contaminated soils—a leaching column study. Environmental Pollution, 112, 233–243.

    Article  CAS  Google Scholar 

  • Houba, V. J. G., Temminghoff, E. J. M., Gaikhorst, G. A., & van Vark, W. (2000). Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis, 31, 1299–1396.

    Article  CAS  Google Scholar 

  • Kharisun, Taylor, M. R., & Bevan, D. J. M. (1997). The crystal structure of kintoreite, PbFe3(PO4)2(OH,H2O)6. Mineralogical Magazine, 61, 123–129.

    Article  CAS  Google Scholar 

  • Kilgour, D. W., Moseley, R. B., Barnett, M. O., Savage, K. S., & Jardine, P. M. (2008). Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil. Journal of Environmental Quality, 35, 1733–1740.

    Article  Google Scholar 

  • Knox, A. S., Kaplan, D. I., & Paller, M. H. (2006). Phosphate sources and their suitability for remediation of contaminated soils. The Science of the Total Environment, 357, 271–279.

    Article  CAS  Google Scholar 

  • Krouse, H. R., & Coplen, T. B. (1997). Reporting of relative sulphur isotope-ratio data. Pure and Applied Chemistry, 69, 293–295.

    Article  CAS  Google Scholar 

  • Krouse, H. R., Ueda, A. & Campbell, F. A. (1990). Sulphur isotope abundances in coexisting sulphate and sulphide: kinetic isotope effects versus exchange phenomena. In: H.K. Herbert and S.E. Ho (eds.), Stable Isotopes and Fluid Processes in Mineralisation (pp. 226–243). Proceedings of the Conference on Stable Isotopes and Fluid Processes in Mineralization, Queensland 1985. The University of Western Australia, Publication No. 23.

  • Laperche, V., Traina, S. J., Gaddam, P., & Logan, T. J. (1996). Chemical and mineralogical characterizations of Pb in a contaminated soil: reactions with synthetic apatite. Environmental Science & Technology, 30, 3321–3326.

    Article  CAS  Google Scholar 

  • Laperche, V., Logan, T. J., Gaddam, P., & Traina, S. J. (1997). Effect of apatite amendments on plant uptake of lead from contaminated soil. Environmental Science & Technology, 31, 2745–2753.

    Article  CAS  Google Scholar 

  • Lin, C. W., Lian, J., & Fang, H. H. (2005). Soil lead immobilization using phosphate rock. Water, Air, and Soil Pollution, 161, 113–123.

    Article  CAS  Google Scholar 

  • Lindsay, W. L. (1979). Chemical equilibria in soils. New York: Wiley.

    Google Scholar 

  • Lombi, E., Sletten, R. S., & Wenzel, W. W. (2000). Sequentially extracted arsenic from different size fractions of contaminated soil. Water, Air and Soil Pollution, 124, 319–332.

    Article  CAS  Google Scholar 

  • Lottermoser, B. G. (2007). Mine wastes: characterization, treatment and environmental impacts (2nd ed.). Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Ma, L. Q., & Rao, G. N. (1999). Aqueous Pb reduction in Pb-contaminated soils by Florida phosphate rocks. Water, Air, and Soil Pollution, 110, 1–16.

    Article  CAS  Google Scholar 

  • Ma, Q. Y., Logan, T. J., & Traina, S. J. (1995). Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environmental Science & Technology, 29, 1118–1126.

    Article  CAS  Google Scholar 

  • Martinez, C. E., Jacobson, A. R., & McBride, M. B. (2004). Lead phosphate minerals: solubility and dissolution by model and natural ligands. Environmental Science & Technology, 38, 5584–5590.

    Article  CAS  Google Scholar 

  • McGowen, S. L., Basta, N. T., & Brown, G. O. (2001). Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. Journal of Environmental Quality, 30, 493–500.

    Article  CAS  Google Scholar 

  • Melamed, R., Cao, X., Chen, M., & Ma, L. Q. (2003). Field assessment of lead immobilization in a contaminated soil after phosphate application. The Science of the Total Environment, 303, 117–127.

    Article  Google Scholar 

  • Miretzky, P., & Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils: a review. Environmental Chemistry Letters, 6, 121–133.

    Article  CAS  Google Scholar 

  • Morin, K. A., & Hutt, N. M. (1997). Environmental geochemistry of minesite drainage. Vancouver: MDAG Publishing.

    Google Scholar 

  • NEPC (National Environment Protection Council) (1999). Assessment of Site Contamination. Schedule B (1) Guideline on the Investigation Levels for Soil and Groundwater. http://www.ephc.gov.au/sites/default/files/ASC_NEPMsch__01_Investigation_Levels_199912.pdf. Accessed 15 Dec 2009.

  • Plimer, I. R. (1984). The mineralogical history of the Broken Hill lode, NSW. Australian Journal of Earth Sciences, 31, 379–402.

    Article  Google Scholar 

  • Pring, A., Birch, W. D., Dawe, J., Taylor, M., Deliens, M., & Walenta, K. (1995). Kintoreite, PbFe3(PO4)2(OH, H2O)6, a new mineral of the jarosite-alunite family, and lusungite discredited. Mineralogical Magazine, 59, 143–148.

    Article  CAS  Google Scholar 

  • Rayment, G. E., & Higginson, F. R. (1992). Australian laboratory handbook of soil and water chemical methods. Port Melbourne: Inkata Press.

    Google Scholar 

  • Ruby, M. V., Davis, A., & Nicholson, A. (1994). In situ formation of lead phosphates in soils as a method to immobilize lead. Environmental Science & Technology, 28, 646–654.

    Article  CAS  Google Scholar 

  • Ryan, J. A., Zhang, P., Hesterberg, D., Chou, J., & Sayers, D. E. (2001). Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite. Environmental Science & Technology, 35, 3798–3803.

    Article  CAS  Google Scholar 

  • Scheckel, K. G., & Ryan, J. A. (2004). Spectroscopic speciation and quantification of lead in phosphate-amended soils. Journal of Environmental Quality, 33, 1288–1295.

    Article  CAS  Google Scholar 

  • Shevade, A. V., Erickson, L., Pierzynski, G., & Jiang, S. (2001). Formation and stability of substituted pyromorphite: a molecular modeling study. Journal of Hazardous Substance Research, 3, 2-1–2-12.

    Google Scholar 

  • Smart, R., Skinner, B., Levay, G., Gerson, A., Thomas, J., Sobieraj, H., et al. (2002). ARD test handbook. Melbourne: AMIRA International.

    Google Scholar 

  • Smith, K. S., & Huyck, H. L. O. (1999). An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. In G. S. Plumlee & M. J. Logsdon (Eds.), The environmental geochemistry of mineral deposits, Part A: processes, techniques, and health issues (pp. 29–70). Littleton: Reviews in Economic Geology, Volume 6A, Society of Economic Geologists.

    Google Scholar 

  • Sneddon, I. R., Orueetxebarria, M., Hodson, M. E., Schofield, P. F., & Valsami-Jones, E. (2006). Use of bone meal amendments to immobilise Pb, Zn and Cd in soil: a leaching column study. Environmental Pollution, 144, 816–825.

    Article  CAS  Google Scholar 

  • Sneddon, I. R., Orueetxebarria, M., Hodson, M. E., Schofield, P. F., & Valsami-Jones, E. (2008). Field trial using bone meal amendments to remediate mine waste derived soil contaminated with zinc, lead and cadmium. Applied Geochemistry, 23, 2414–2424.

    Article  CAS  Google Scholar 

  • Spuller, C., Weigand, H., & Marb, C. (2007). Trace metal stabilisation in a shooting range soil: mobility and phytotoxicty. Journal of Hazardous Materials, 141, 378–387.

    Article  CAS  Google Scholar 

  • Strawn, D. G., Hickey, P., Knudsen, A., & Baker, L. (2007). Geochemistry of lead contaminated wetland soils amended with phosphorus. Environmental Geology, 52, 109–122.

    Article  CAS  Google Scholar 

  • Traina, S. J., & Laperche, V. (1999). Contaminant bioavailability in soils, sediments, and aquatic environments. Proceedings of the National Academy of Science, 96, 3365–3371.

    Article  CAS  Google Scholar 

  • Wilson, C., Brigmon, R. L., Knox, A., Seaman, J., & Smith, G. (2006). Effects of microbial and phosphate amendments on the bioavailability of lead (Pb) in shooting range soil. Bulletin of Environmental Contamination and Toxicology, 76, 392–399.

    Article  CAS  Google Scholar 

  • Wilson, S. C., Lockwood, P. V., Ashley, P. M., & Tighe, M. (2009). The chemistry and behaviour of antimony in the soil environment with comparison to arsenic: a critical review. Environmental Pollution, in press, doi: 10.1016/j.envpol.2009.10.045.

  • Xu, Y., & Schwartz, F. W. (1994). Lead immobilization by hydroxyapatite in aqueous solutions. Journal of Contaminant Hydrology, 15, 187–206.

    Article  CAS  Google Scholar 

  • Yoon, J. K., Cao, X., & Ma, L. Q. (2007). Application methods affect phosphorus-induced lead immobilization from contaminated soil. Journal of Environmental Quality, 36, 373–378.

    Article  CAS  Google Scholar 

  • Zhang, P., & Ryan, J. A. (1998). Formation of pyromorphite in anglesite-hydroxyapatite suspensions under varying pH conditions. Environmental Science & Technology, 32, 3318–3324.

    Article  CAS  Google Scholar 

  • Zhang, P., & Ryan, J. A. (1999a). Formation of chloropyromorphite from galena (PbS) in the presence of hydroxyapatite. Environmental Science & Technology, 33, 618–624.

    Article  CAS  Google Scholar 

  • Zhang, P., & Ryan, J. A. (1999b). Transformation of Pb(II) from cerussite to chloropyromorphite in the presence of hydroxyapatite under varying conditions of pH. Environmental Science & Technology, 33, 625–630.

    Article  CAS  Google Scholar 

  • Zhang, P., Ryan, J. A., & Bryndzia, L. T. (1997). Pyromorphite formation from goethite adsorbed lead. Environmental Science & Technology, 31, 2673–2678.

    Article  CAS  Google Scholar 

  • Zhang, P., Ryan, J. A., & Yang, J. (1998). In vitro soil Pb solubility in the presence of hydroxyapatite. Environmental Science & Technology, 32, 2763–2768.

    Article  CAS  Google Scholar 

  • Zwonitzer, J. C., Pierzynski, G. M., & Hettiarachchi, G. M. (2003). Effects of phosphorus additions on lead, cadmium, and zinc bioavailabilities in a metal-contaminated soil. Water, Air, and Soil Pollution, 143, 193–209.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported under Australian Research Council’s Discovery Projects funding scheme (project number DP0877182). Dr Kevin Blake and Dr Yi Hu (JCU AAC) are thanked for analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels C. Munksgaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munksgaard, N.C., Lottermoser, B.G. Fertilizer Amendment of Mining-Impacted Soils from Broken Hill, Australia: Fixation or Release of Contaminants?. Water Air Soil Pollut 215, 373–397 (2011). https://doi.org/10.1007/s11270-010-0485-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0485-y

Keywords

Navigation