Skip to main content
Log in

Acid pond sediment and mine tailings contaminated with metals: physicochemical characterization and electrokinetic remediation

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Mine tailings and acid pond sediment from a former mining area in Canakkale (Turkey) were analyzed for physical (e.g., moisture content, particle size, specific gravity and hydraulic conductivity) and chemical parameters (e.g., organic content, pH, ORP and EC) as well as metal content and sequential extraction analysis, in an attempt to evaluate their risk as a source of contaminants. Column extraction tests were conducted to investigate the leachability under model field conditions using simulated rainwater. The toxicity characteristic leaching procedure and synthetic precipitation leaching procedure (SPLP) methods were performed to evaluate the expected concentrations in the water in contact with the solid material. The column tests proved that Fe and Pb can be released to the waterbodies in contact with the solid materials. Pb was released easier than Fe due to its content in the more labile fractions in the sequential extraction analysis. SPLP-Pb in both tailings and sediment exceeded the USEPA regulatory limit, confirming the hazardousness of those materials. Electrokinetic remediation has been tested as a possible technology for the removal of metals from mine tailings and sediment. Electrokinetics removed 20% of Pb and Fe in 9 days of treatment at 1 VDC/cm. The metal removal efficiency was very affected by metal speciation. Electrokinetics could remove metal fractions I–IV [as described by Tessier et al. (Anal Chem 51(7):844–851, 1979) especially in the closest section to the anode of the solid matrix, and the metals accumulated in the following sections. The results suggested that Fe and Pb could be effectively removed from the mine tailings and sediment if the advance of the acid front was favored and the treatment time increased. However, considering the physicochemical characterization and the results from the electrokinetic treatment, other green and more sustainable remedial strategies have to be proposed for mitigation of environmental risks of former mining areas. Instead of focusing on metal removal, the results of this work suggest that the immobilization and stabilization of metals in the site are more practical solutions. Thus, phytocapping is recommended as a practical green and sustainable method to mitigate the environmental risks of former mining areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14(12–13):1139–1145. doi:10.1016/j.jclepro.2004.09.006

    Article  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3(1):71–90. doi:10.1023/B:RESB.0000040059.70899.3d

    Article  Google Scholar 

  • Beckett PHT (1989) The use of extractants in studies on trace metals in soils, sewage sludges, and sludge-treated soils. In: Stewart BA (ed) Advances in soil science, vol 9. Springer, New York. pp 143–176. doi:10.1007/978-1-4612-3532-3_3

  • Bharti S, Banerjee TK (2012) Phytoremediation of the coalmine effluent. Ecotoxicol Environ Saf 81:36–42. doi:10.1016/j.ecoenv.2012.04.009

    Article  Google Scholar 

  • Cameselle C, Chirakkara RA, Reddy KR (2013) Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93:626–636. doi:10.1016/j.chemosphere.2013.06.029

    Article  Google Scholar 

  • Chirakkara RA, Reddy KR (2015) Phytoremediation of mixed contaminated soils: enhancement with biochar and compost amendments. Geotech Spec Publ 256:2687–2696. doi:10.1061/9780784479087.250

    Google Scholar 

  • Flores L, Blas G, Hernández G, Alcalá R (1997) Distribution and sequential extraction of some heavy metals from soils irrigated with wastewater from Mexico city. Water Air Soil Pollut 98(1–2):105–117. doi:10.1023/A:1026472611589

    Google Scholar 

  • Grathwohl P, Susset B (2009) Comparison of percolation to batch and sequential leaching tests: theory and data. Waste Manage 29(10):2681–2688. doi:10.1016/j.wasman.2009.05.016

    Article  Google Scholar 

  • Hansen HK, Rojo A (2007) Testing pulsed electric fields in electroremediation of copper mine tailings. Electrochim Acta 52(10):3399–3405. doi:10.1016/j.electacta.2006.07.064

    Article  Google Scholar 

  • Hansen HK, Rojo A, Ottosen LM (2005) Electrodialytic remediation of copper mine tailings. J Hazard Mater 117(2–3):179–183. doi:10.1016/j.jhazmat.2004.09.014

    Article  Google Scholar 

  • Hansen HK, Rojo A, Ottosen LM (2007) Electrokinetic remediation of copper mine tailings. Implementing bipolar electrodes. Electrochim Acta 52(10):3355–3359. doi:10.1016/j.electacta.2006.02.069

    Article  Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154(7):466–473. doi:10.1016/S0923-2508(03)00114-1

    Article  Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338(1–2):3–14. doi:10.1016/j.scitotenv.2004.09.002

    Article  Google Scholar 

  • Karaca O, Reddy KR (2014) Environmental assessment of mine tailings: can-etili basin (Turkey) as a case study. In: Proceedings of 14th international multidisciplinary scientific geoconference and expo (SGEM 2014). Albena Resort, Bulgaria, June 17–26, 2014

  • Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in china: a review of research and practice. Sci Total Environ 357(1–3):38–53. doi:10.1016/j.scitotenv.2005.05.003

    Article  Google Scholar 

  • Li X, Thornton I (2001) Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appl Geochem 16(15):1693–1706. doi:10.1016/S0883-2927(01)00065-8

    Article  Google Scholar 

  • Maiz I, Arambarri I, Garcia R, Millán E (2000) Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ Pollut 110(1):3–9. doi:10.1016/S0269-7491(99)00287-0

    Article  Google Scholar 

  • Mishra VK, Upadhyaya AR, Pandey SK, Tripathi BD (2008) Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresour Technol 99(5):930–936. doi:10.1016/j.biortech.2007.03.010

    Article  Google Scholar 

  • Nordstrom DK, Blowes DW, Ptacek CJ (2015) Hydrogeochemistry and microbiology of mine drainage: an update. Appl Geochem 57:3–16. doi:10.1016/j.apgeochem.2015.02.008

    Article  Google Scholar 

  • Reddy KR, Cameselle C (2009) Electrochemical remediation technologies for polluted soils, sediments and groundwater. Wiley, Hoboken. doi:10.1002/9780470523650

    Book  Google Scholar 

  • Salomons W (1995) Environmental impact of metals derived from mining activities: processes, predictions, prevention. J Geochem Explor 52(1–2):5–23. doi:10.1016/0375-6742(94)00039-E

    Article  Google Scholar 

  • Sharma HD, Reddy KR (2004) Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. Wiley, Hoboken

    Google Scholar 

  • Singh AN, Raghubanshi AS, Singh JS (2004) Comparative performance and restoration potential of two albizia species planted on mine spoil in a dry tropical region, India. Ecol Eng 22(2):123–140. doi:10.1016/j.ecoleng.2004.04.001

    Article  Google Scholar 

  • Sola C, Burgos M, Plazuelo A, Toja J, Plans M, Prat N (2004) Heavy metal bioaccumulation and macroinvertebrate community changes in a mediterranean stream affected by acid mine drainage and an accidental spill (Guadiamar river, SW Spain). Sci Total Environ 333(1–3):109–126. doi:10.1016/j.scitotenv.2004.05.011

    Article  Google Scholar 

  • Tessier A, Campbell PGC, Blsson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851

    Article  Google Scholar 

  • Ure AM, Quevauviller P, Griepink B (1993) Speciation of heavy metals in soils and sediments an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int J Environ Anal Chem 51(1–4):135–151. doi:10.1080/03067319308027619

    Article  Google Scholar 

  • USEPA (1992) Method 1311, Toxicity characteristic leaching procedure (TCLP). Publication SW-846: test methods for evaluating solid waste, physical/chemical methods

  • USEPA (1994) Method 1312, Synthetic precipitation leaching procedure (SPLP). Publication SW-846: test methods for evaluating solid waste, physical/chemical methods

Download references

Acknowledgements

The Scientific and Technological Research Council of Turkey (TUBITAK) awarded a fellowship to Oznur Karaca, which made it possible to conduct this research at the University of Illinois at Chicago. Authors would also like to thank Prof. Mustafa BOZCU for his help in the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Cameselle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaca, O., Cameselle, C. & Reddy, K.R. Acid pond sediment and mine tailings contaminated with metals: physicochemical characterization and electrokinetic remediation. Environ Earth Sci 76, 408 (2017). https://doi.org/10.1007/s12665-017-6736-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6736-0

Keywords

Navigation