Skip to main content
Log in

α-Fe2O3-based nanocomposites: synthesis, characterization, and photocatalytic response towards wastewater treatment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Recently, rising distress over ecological pollution owing to water contamination by coloring effluents primarily due to dyes is of growing concern. The development of semiconductor/magnetic oxide–based nanomaterials has verified to be a potent remediation means for water pollution. In the present article, the fabrication of nanocomposites was carried out by the facile hydrothermal method. The ZnO and ZnSe nanoparticles were in situ formed on the α-Fe2O3 layer, thereby forming a heterojunction. The prepared α-Fe2O3/ZnSe nanocomposite possessed a degradation of 98.9% for a Congo red aqueous solution of 100 ppm. The α-Fe2O3/ZnO nanocomposite showed only 26% degradation of 100 ppm dye solution depicting a poor photocatalytic performance. This is attributed to the formation of recombination-enhanced configuration (type-I heterostructure) in the α-Fe2O3/ZnO nanocomposite (NC). In contrast, α-Fe2O3/ZnSe NC accomplished a higher and enhanced photocatalytic response. The key rationale for elevated photocatalytic response is the establishment of a recombination-free configuration (type-II heterostructure). Thus, α-Fe2O3/ZnSe NC known as one of outstanding nanoparticle-nanocomposite photocatalysts was synthesized under mild conditions exclusive of some multifaceted post-treatment, for dye abatement process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbasi A, Ghanbari D, Salavati-Niasari M, Hamadanian M (2016) Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe 2 O 3–TiO 2 nanoparticles and nanocomposites. J Mater Sci-Mater El 27:4800–4809

    Article  CAS  Google Scholar 

  • Abdelaal MY, Mohamed RM (2013) Novel Pd/TiO2 nanocomposite prepared by modified sol-gel method for photocatalytic degradation of methylene blue dye under visible light irradiation. J Alloys Compd 576:201–207

    Article  CAS  Google Scholar 

  • Aliwi SM, Al-Jubori K (1989) Photoreduction of CO2 by metal sulphide semiconductors in presence of H2s. sol. Energy Mater 18(3–4):223–229

    CAS  Google Scholar 

  • Belattar S, Mameri Y, Seraghni N, Debbache N, Sehili T (2012) Catalytic degradation of 3, 5-dimethylphenol with goethite and hydrogen peroxide Int. J Environ Eng 1(3):21–28

    Google Scholar 

  • Bhargava G, Gouzman I, Chun CM, Ramanarayanan TA, Bernasek SL (2007) Characterization of the “native” surface thin film on pure polycrystalline iron: a high resolution XPS and TEM study. Appl Surf Sci 253(9):4322–4329

    Article  CAS  Google Scholar 

  • Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. Am J Phys Chem 90(12):2555–2560

    Article  CAS  Google Scholar 

  • Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53(2):117–166

    Article  CAS  Google Scholar 

  • Cardoso JC, Bessegato GG, Zanoni MVB (2016) Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Res 98:39–46

    Article  CAS  Google Scholar 

  • Chen YH, Lin CC (2014) Effect of nano-hematite morphology on photocatalytic activity. Phys Chem Miner 41(10):727–736

    Article  CAS  Google Scholar 

  • Chen J, Xu L, Li W, Gou X (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. J Adv Mater 17(5):582–586

    Article  CAS  Google Scholar 

  • Cozzoli PD, Manna L, Curri ML, Kudera S, Giannini C, Striccoli M, Agostiano A (2005) Shape and phase control of colloidal ZnSe nanocrystals. Chem Mater 17(6):1296–1306

    Article  CAS  Google Scholar 

  • Divya KS, Madhu AK, Umadevi TU, Suprabha T, Nair PR, Mathew S (2017) Improving the photocatalytic performance of TiO2 via hybridizing with graphene. J Semicond 38(6):063002

    Article  Google Scholar 

  • Eggins BR, Irvine JT, Murphy EP, Grimshaw J (1988) Formation of two-carbon acids from carbon dioxide by photoreduction on cadmium sulphide. J Chem Soc Chem Comm 16:1123–1124

    Article  Google Scholar 

  • Ehsan MF, Ashiq MN, Bi F, Bi Y, Palanisamy S, He T (2014) Preparation and characterization of SrTiO 3–ZnTe nanocomposites for the visible-light photoconversion of carbon dioxide to methane. RSC Adv 4(89):48411–48418

    Article  CAS  Google Scholar 

  • Fatemeh A, Nazanin F, Ramin MAT (2013) Preparation of NiO loaded on TiO2 nanostructure as nanophotocatalyst and its photocatalytic activity for degradation of methylene blue. RES J CHEM ENVIRON 17:92–96

    CAS  Google Scholar 

  • Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

  • Ghorbani HR, Mehr FP, Pazoki H, Rahmani BM (2015) Synthesis of ZnO nanoparticles by precipitation method. Orient J Chem 31(2):1219–1221

    Article  CAS  Google Scholar 

  • Gnanaprakasam A, Sivakumar VM, Thirumarimurugan M (2015) Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: a review. Indian J Eng Mater Sci 16:1–16

    Google Scholar 

  • Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36(12):1564–1574

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  Google Scholar 

  • Ham S, Kim Y, Park MJ, Hong BH, Jang DJ (2016) Graphene quantum dots-decorated ZnS nanobelts with highly efficient photocatalytic performances. RSC Adv 6(29):24115–24120

    Article  CAS  Google Scholar 

  • Hamadanian M, Behpour M, Razavian AS, Habbari V (2013) Structural, morphological and photocatalytic characterizations of Ag-coated anatase TiO2 fabricated by the sol gel dip coating method. J Exp Nanosci 8:901–912

    Article  CAS  Google Scholar 

  • Harish B, Srivastava AK, Haranath D, Harish C, Basu A, Samanta SB, Sood KN, Ram K, Sharma RK, Rashmi VB, Pal P, Chandra S (2007) Nano-structured ZnO films by sol-gel process. Indian J Pure Appl Phy 45:395–399

    Google Scholar 

  • Harish S, Archana J, Navaneethan M, Ponnusamy S, Singh A, Vinay G, Aswal DK, Ikeda H, Hayakawa Y (2017) Synergetic effect of CuS@ZnS nanostructures on photocatalytic degradation of organic pollutant under visible light irradiation. RSC Adv 7(55):34366–34375

    Article  CAS  Google Scholar 

  • Harraz FA, Mohamed RM, Rashad MM, Wang YC, Sigmund W (2014) Magnetic nanocomposite based on titaniasilica/ cobalt ferrite for photocatalytic degradation of methylene blue dye. Ceram Int 40:375–384

    Article  CAS  Google Scholar 

  • Hasnidawani JN, Azlina HN, Norita H, Bonnia NN, Ratim S, Ali ES (2016) Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem 19:211–216

    Article  CAS  Google Scholar 

  • He YP, Miao YM, Li CR, Wang SQ, Cao L, Xie SS et al (2005) Size and structure effect on optical transitions of iron oxide nanocrystals. Phys Rev B 71(12):125411

    Article  Google Scholar 

  • Hu W, Xie J, Yan K, Duan M (2011) Growth mechanism of different morphologies of ZnO crystals prepared by hydrothermal method. J Mater Sci Technol 27(2):153–158

    Article  Google Scholar 

  • Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277(5698):637–638

    Article  CAS  Google Scholar 

  • Inoue H, Moriwaki H, Maeda K, Yoneyama H (1995) Photoreduction of carbon dioxide using chalcogenide semiconductor microcrystals. J Photochem Photobiol A 86(1–3):191–196

    Article  CAS  Google Scholar 

  • Jiang T, Zhang L, Ji M, Wang Q, Zhao Q, Fu X, Yin H (2013) Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degrdation of methyl orange dye. Particuology 11:737–742

    Article  CAS  Google Scholar 

  • Jie R-H, Guo G-B, Zhao W-G, An S-L (2013) Preparationand photocatalytic degradation of methyl orange of nano-powder TiO2 by hydrothermal method supported on activated carbon. J Syn Cryst 42:2144–2149

    CAS  Google Scholar 

  • Johne P, Kisch H (1997) Photoreduction of carbon dioxide catalysed by free and supported zinc and cadmium sulphide powders. J. Photochem. Photobiol. A 111(1–3):223–228

    Article  CAS  Google Scholar 

  • Jorge G-R, Fernández L, Bava YB, Buceta D, Vázquez-Vázquez C, López-Quintela MA, Feijoo G, Moreira MT (2020) Enhanced photocatalytic activity of semiconductor nanocomposites doped with Ag nanoclusters under UV and visible light. Catalysts 10(1):31

    Google Scholar 

  • Joshi BN, Yoon H, Na S-H, Choi J-Y, Yoon SS (2014) Enchanced photocatalytic performance of graphene-ZnO nanoplatet composite thin films prepared by electrostatic spray deposition. Ceram Int 40:3647–3654

    Article  CAS  Google Scholar 

  • Kalpesh AI, Shrivastava VS (2019) Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study. SN Applied Sciences 1(10):1247

    Article  Google Scholar 

  • Kanemoto M, Hosokawa H, Wada Y, Murakoshi K, Yanagida S, Sakata T, Mori H, Ishikawa M, Kobayashi H (1996) Semiconductor photocatalysis. Part 20.—role of surface in the photoreduction of carbon dioxide catalysed by colloidal ZnS nanocrystallites in organic solvent. J. Chem. Soc. Faraday Trans 92(13):2401–2411

    Article  CAS  Google Scholar 

  • Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Photoreduction of CO2 with H2 over ZrO 2. A study on interaction of hydrogen with photoexcited CO2. Phys Chem Chem Phys 2(11):2635–2639

    Article  CAS  Google Scholar 

  • Kwan WP, Voelker BM (2003) Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Sci Technol 37(6):1150–1158

    Article  CAS  Google Scholar 

  • Lee HU, Lee G, Park JC, Lee YC, Lee SM, Son B, Park SY, Kim C, Lee SG, Lee SC, Nam B, Lee JW, Bae DR, Yoon JS, Lee J (2014) Efficient visible-light nresponsive TiO2 nanoparticles incoporated magnetic carbon photocatalysts. Chem Eng J 240:91–98

    Article  CAS  Google Scholar 

  • Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR (2003) The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B-Environ 43(2):151–162

    Article  CAS  Google Scholar 

  • Livage J (1981) Amorphous transition metal oxides. J Phys Colloq 42:C4–C981

  • Matsumoto Y, Obata M, Hombo J (1994) Photocatalytic reduction of carbon dioxide on p-type CaFe2O4 powder. J Phys Chem A 98(11):2950–2951

    Article  CAS  Google Scholar 

  • Mavinakere RA, Akshatha G, Srikantaswamy S (2019) Photocatalytic dye degradation and biological activities of the Fe2O3/Cu2O nanocomposite. RSC Adv 9:8557

    Article  Google Scholar 

  • Mkhalid IA (2018) Improved photocatalytic performance in Bi2S3-ZnSe nanocomposites for hydrogen production. Ceram Int 44(18):22198–22204

    Article  CAS  Google Scholar 

  • Mukhtar M, Munisa L, Saleh R (2012) Co-precipitation synthesis and characterization of nanocrystalline zinc oxide particles doped with Cu 2+ ions. Mater Sci Appl 3:543–551

    Google Scholar 

  • Murphy AB (2007) Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol Energ Mat Sol C 91(14):1326–1337

    Article  CAS  Google Scholar 

  • Muth, P. (1981). EP Wohlfarth (ed.). Ferromagnetic materials, vol. 2. North-Holland Publ. Co. Amsterdam 1980 592 Seiten. Preis US£ 102, 50, Dfl. 210, 00. Krist Tech, 16(1), 127–127

  • Natsume Y, Sakata H (2000) Zinc oxide films prepared by sol-gel spin-coating. Thin Solid Films 372:30–36

    Article  CAS  Google Scholar 

  • Pawar RC, Pyo Y, Ahn SH, Lee CS (2015) Photoelectrochemical properties and photodegradation of organic pollutants using hematite hybrids modified by gold nanoparticles and graphitic carbon nitride. Appl Catal B 4(45):1–43

    Google Scholar 

  • Pholnak C, Sirisathitkul C, Harding DJ, Suwanboon S (2011) Sonochemical synthesis of ZnO nanotubes and their optical emissions. J Ceram Soc JAPAN 119(1390):535–537

    Article  CAS  Google Scholar 

  • Pradhan GK, Martha S, Parida KM (2012) Synthesis of multifunctional nanostructured zinc–iron mixed oxide photocatalyst by a simple solution-combustion technique. ACS APPL MATER INTER 4(2):707–713

    Article  CAS  Google Scholar 

  • Pradhan GK, Padhi DK, Parida KM (2013a) Fabrication of α-Fe2O3 nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation. ACS Appl Mater Inter 5(18):9101–9110

    Article  CAS  Google Scholar 

  • Pradhan GK, Sahu N, Parida KM (2013b) Fabrication of S, N co-doped α-Fe 2 O 3 nanostructures: effect of doping, OH radical formation, surface area,[110] plane and particle size on the photocatalytic activity. RSC Adv 3(21):7912–7920

    Article  CAS  Google Scholar 

  • Precursor ZN (2014) International journal of bio-inorganic hybrid nanomaterials. Int J Bio-Inorg Hybr Nanomater 3(3):179–184

    Google Scholar 

  • Priyanka, Srivastava VC (2013) Photocatalytic oxidation of dye bearing wastewater by iron doped zinc-oxide. Ind Eng Chem Res 52(50):17790–17799

    Article  CAS  Google Scholar 

  • Punzi M, Nilsson F, Anbalagan A, Svensson B-M, Jönsson K, Mattiasson B, Jonstrup M (2015) Combined anaerobic–ozonation process for treatment of textile wastewater:removal of acute toxicity and mutagenicity. J Hazard Mater 292:52–60

    Article  CAS  Google Scholar 

  • Rajbongshi BM, Samdarshi SK (2014) ZnO and Co-ZnO nanorods-Complementary role of oxygen vacancy in photocatalytic activity of under UV and visible radiation flux. Mater Sci Eng B 182:21–28

    Article  CAS  Google Scholar 

  • Saygi B, Tekin D (2013) Photocatalytic degradation kinetics of reactive black 5 (RB 5) dyestuff on TiO2 modified by pretreatment with untrasound energy. React Kinet Mech Catal 110(1):251–258

    Article  CAS  Google Scholar 

  • Shahmoradi B, Maleki A, Byrappa K (2015) Removal of dispersed orange 25 using in situ surface iron-doped TiO2 nanoparticles. Desalination Water Treat 53(13):3615–3622

    Article  CAS  Google Scholar 

  • A. Sharma, S. Rani, A. Bansal, and A. Sood (2006) Effect of mordant combination on silk dyeing with apricot dye. Natural Dyes: scope and challenges, 137–143

  • Sherman DM, Waite TD (1985) Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. Am Mineral 70(11–12):1262–1269

    CAS  Google Scholar 

  • Silva MF, de Oliveira LA, Ciciliati MA, Silva LT, Pereira BS, Hechenleitner AAW et al (2013) Nanometric particle size and phase controlled synthesis and characterization of γ- Fe2O3 or (α+ γ)- Fe2O3 by a modified sol-gel method. Int J Appl Phys 114(10):104311

    Article  Google Scholar 

  • Sun L, Shi Y, Li B, Li X, Wang Y (2013) Preparation and characterization of polypyrrole/TiO2 nanocomposites by reverse microemulsion polymerization and its photocatalytic activity for the degradation of methyl orange under natural light. Polym Compos 34(7):1076–1080

    Article  CAS  Google Scholar 

  • Teramura K, Tanaka T, Ishikawa H, Kohno Y, Funabiki T (2004) Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J Phys Chem B 108(1):346–354

    Article  CAS  Google Scholar 

  • Teramura K, Tsuneoka H, Shishido T, Tanaka T (2008) Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chem Phys Lett 467(1–3):191–194

    Article  CAS  Google Scholar 

  • Tsuneoka H, Teramura K, Shishido T, Tanaka T (2010) Adsorbed species of CO2 and H2 on Ga2O3 for the photocatalytic reduction of CO2. J Phys Chem 114(19):8892–8898

    CAS  Google Scholar 

  • Urbaniak K, Lewenstein K (2017) Application of artificial neural networks for early detection of breast cancer. In recent global research and education: technological challenges. Springer, Cham, pp 425–433

    Google Scholar 

  • Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., & Muilenberg, G. E. (1979) Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corp. Eden Prairie, MN, 38

  • Wang L, Wei H, Fan Y, Gu X, Zhan J (2009) One-dimensional CdS/α-Fe2O3 and CdS/Fe3O4 heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity. J Phys Chem C 113(32):14119–14125

    Article  CAS  Google Scholar 

  • Wang N, Zhu L, Wang D, Wang M, Lin Z, Tang H (2010) Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason Sonochem 17(3):526–533

    Article  CAS  Google Scholar 

  • Wang K, Abdalla AA, Khaleel MA, Hilal N, Khraisheh MK (2017) Mechanical properties of water desalination and wastewater treatment membranes. Desalination 401:190–205

    Article  CAS  Google Scholar 

  • Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093

    Article  CAS  Google Scholar 

  • Wu W, Xiao X, Zhang S, Ren F, Jiang C (2011) Facile method to synthesize magnetic iron oxides/TiO 2 hybrid nanoparticles and their photodegradation application of methylene blue. Nanoscale Res. Lett. 6(1):1–15

    Article  Google Scholar 

  • Yamase T, Sugeta M (1990) Photoreduction of CO2 to CH4 in water using dititanodecatungston phosphate as multi-electron transfer catalyst. Inorganica Chim. Acta 172(2):131–134

    CAS  Google Scholar 

  • Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254(8):2441–2449

    Article  CAS  Google Scholar 

  • Yoshimura M, Byrappa K (2008) Hydrothermal processing of materials: past, present and future. J Mater Sci 43(7):2085–2103

    Article  CAS  Google Scholar 

  • Yu BY, Kwak SY (2012) Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts. J Mater Chem 22(17):8345–8353

    Article  CAS  Google Scholar 

  • Yu F, Huang Y, Cole AJ, Yang VC (2009) The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection. Biomaterials 30(27):4716–4722

    Article  CAS  Google Scholar 

  • Zeng S, Tang K, Li T, Liang Z (2010) Hematite with the urchinlike structure: its shape-selective synthesis, magnetism, and enhanced photocatalytic performance after TiO2 encapsulation. J Phys Chem C 114(1):274–283

    Article  CAS  Google Scholar 

  • Zhang X, Zhao H, Tao X, Zhao Y, Zhang Z (2005) Sonochemical method for the preparation of ZnO nanorods and trigonal-shaped ultrafine particles. Mater Lett 59(14–15):1745–1747

    Article  CAS  Google Scholar 

  • Zhang L, Yang H, Yu J, Shao F, Li L, Zhang F, Zhao H (2009) Controlled synthesis and photocatalytic activity of ZnSe nanostructured assemblies with different morphologies and crystalline phases. J Phys Chem C 113(14):5434–5443

    Article  CAS  Google Scholar 

  • Zhang XQ, Gong SW, Zhang Y, Yang T, Wang CY, Gu N (2010a) Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J Mater Chem 20(24):5110–5116

    Article  CAS  Google Scholar 

  • Zhang Z, Hossain MF, Takahashi T (2010b) Fabrication of shape-controlled α-Fe2O3 nanostructures by sonoelectrochemical anodization for visible light photocatalytic application. Mater Lett 64(3):435–438

    Article  CAS  Google Scholar 

  • Zhang Y, Hu C, Feng B, Wang X, Wan B (2011) Synthesis and photocatalytic property of ZnSe flowerlike hierarchical structure. Appl Surf Sci 257(24):10679–10685

    Article  CAS  Google Scholar 

  • Zhang W, Hu T, Yang B, Sun P, He H (2013a) The effect of boron content on properties of B-TiO2 photocatalyst prepared by solgel method. J Adv Oxid Technol 16:261–267

    CAS  Google Scholar 

  • Zhang J, Liu W, Wang X, Wang X, Hu B, Liu H (2013b) Enchanced decolarization activity by Cu2O@TiO2 nanobelts heterostructures via a strong adsorption-weak photodegradation process. Appl Surf Sci 282:84–91

    Article  CAS  Google Scholar 

  • Zhang S, Li J, Niu H, Xu W, Xu J, Hu W, Wang X (2013c) Visible-light photocatalytic degradation of methylene blue using SnO2/[alpha]-Fe2O3 hierarchical nanoheterostructures. ChemPlusChem 78(2):192–199

    Article  CAS  Google Scholar 

  • Zhu YR, Li GC, Zhang QP, Tang C (2012) The photocatalytic degradation of methylene blue wastewater with nanoscale ferric oxide as catalyst. In Adv Mat Res 356:1813–1818

    Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge Dr. Saqib Ali for help in carrying out some characterization techniques.

Author information

Authors and Affiliations

Authors

Contributions

Each author took part in the present work conception and/or design. Tasks of data collection, material preparation, data analysis, and writing of the original draft were executed by Rooha Khurram. Zhan Wang and Muhammad Fahad Ehsan design and supervise the experimental work and helped in writing, reviewing, and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhan Wang or Muhammad Fahad Ehsan.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: Santiago V. Luis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurram, R., Wang, Z. & Ehsan, M.F. α-Fe2O3-based nanocomposites: synthesis, characterization, and photocatalytic response towards wastewater treatment. Environ Sci Pollut Res 28, 17697–17711 (2021). https://doi.org/10.1007/s11356-020-11778-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11778-w

Keywords

Navigation