Skip to main content
Log in

High frequency of antibiotic tolerance in deep subsurface heterotrophic cultivable bacteria from the Rozália Gold Mine, Slovakia

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Rozália Mine, with its long mining history, could represent an environmental threat connected with metal contamination and associated antibiotic tolerance. Metal and antibiotic tolerance profiles of heterotrophic, cultivable bacteria isolated from the Rozália Gold Mine in Hodruša-Hámre, Slovakia, and the surrounding area were analysed. Subsurface samples were collected from different mine levels or an ore storage dump. As expected, heterotrophic cultivable bacteria showed high minimum inhibitory concentrations for metals (up to 1000 mg/l for zinc and nickel, 2000 mg/l for lead and 500 mg/l for copper). Surprisingly, very high minimum inhibitory concentrations of selected antibiotics were observed, e.g. > 10,000 μg/ml for ampicillin, up to 4800 μg/ml for kanamycin, 800 μg/ml for chloramphenicol and 50 μg/ml for tetracycline. Correlation analysis revealed a linkage between increased tolerance to the antibiotics ampicillin and chloramphenicol and metal tolerance to nickel and copper. A correlation was also observed between tetracycline-kanamycin tolerance and zinc-lead tolerance. Our data indicate that high levels of antibiotic tolerance occur in deep subsurface microbiota, which is probably connected with the increased level of metal concentrations in the mine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Árvay J, Demková L, Hauptvogl M, Michalko M, Bajčan D, Stanovič R, Tomáš J, Hrstková M, Trebichalský P (2017) Assessment of environmental and health risks in former polymetallic ore mining and smelting area, Slovakia: spatial distribution and accumulation of mercury in four different ecosystems. Ecotoxicol Environ Saf 144:236–244. https://doi.org/10.1016/j.ecoenv.2017.06.020

    Article  CAS  Google Scholar 

  • Ashbolt NJ (2013) Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect 121:993–1002. https://doi.org/10.1289/ehp.1206316

    Article  Google Scholar 

  • Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4:37–59. https://doi.org/10.1002/cben.201600010

    Article  CAS  Google Scholar 

  • Bengtsson-Palme J, Larsson DGJ (2015) Antibiotic resistance genes in the environment: prioritizing risks. Nat Rev Microbiol 13:396. https://doi.org/10.1038/nrmicro3399-c1

    Article  CAS  Google Scholar 

  • Berg J, Thorsen MK, Holm PE, Jensen J, Nybroe O, Brandt KK (2010) Cu exposure under field conditions coselects for antibiotic resistance as determined by a novel cultivation-independent bacterial community tolerance assay. Environ Sci Technol 44:8724–8728. https://doi.org/10.1021/es101798r

    Article  CAS  Google Scholar 

  • Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD (2012) Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 7:1–11. https://doi.org/10.1371/journal.pone.0034953

    Article  CAS  Google Scholar 

  • Bobulska L (2017) Assessment of soil heavy metal pollution in a former mining area – before and after the end of mining activities assessment of soil heavy metal pollution in a former mining area – before and after the end of mining activities. https://doi.org/10.17221/107/2016-SWR

  • Chen S, Li X, Sun G, Zhang Y, Su J, Ye J (2015) Heavy metal induced antibiotic resistance in bacterium LSJC7. Int J Mol Sci 16:23390–23404. https://doi.org/10.3390/ijms161023390

    Article  CAS  Google Scholar 

  • Chen J, Li J, Zhang H, Shi W, Liu Y (2019) Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in northern China. Front Microbiol 10:1–12. https://doi.org/10.3389/fmicb.2019.01916

    Article  Google Scholar 

  • Chovan M, Jágerský I, Delaney V, et al (2016) Mineralogy of ore dressing products from Banská Hodruša Au ( Ag , Pb , Cu ) epithermal deposit

  • Dadová J, Andráš P, Kupka J, Krnáč J, Andráš P Jr, Hroncová E, Midula P (2016) Mercury contamination from historical mining territory at Malachov Hg-deposit (Central Slovakia). Environ Sci Pollut Res 23:2914–2927. https://doi.org/10.1007/s11356-015-5527-y

    Article  CAS  Google Scholar 

  • Demková L, Árvay J, Bobuľská L, Tomáš J, Stanovič R, Lošák T, Harangozo L, Vollmannová A, Bystrická J, Musilová J, Jobbágy J (2017) Accumulation and environmental risk assessment of heavy metals in soil and plants of four different ecosystems in a former polymetallic ores mining and smelting area (Slovakia). J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng 52:479–490. https://doi.org/10.1080/10934529.2016.1274169

    Article  CAS  Google Scholar 

  • Fashola MO, Ngole-Jeme VM, Babalola OO (2016) Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int J Environ Res Public Health 13. https://doi.org/10.3390/ijerph13111047

  • Gagelidze NA, Amiranashvili LL, Sadunishvili TA, Kvesitadze GI, Urushadze TF, Kvrivishvili TO (2018) Bacterial composition of different types of soils of Georgia. Ann Agrar Sci 16:17–21. https://doi.org/10.1016/j.aasci.2017.08.006

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological Statistics software Package for Education and data analysis past : paleontological statistics software package for education and data analysis even a cursory glance at the recent paleontological literature should convince anyone tha. Palaeontol Electron 4:1–9

  • Haroun A, Kamaluddeen K, Alhaji I, et al (2017) Evaluation of heavy metal tolerance level (MIC) and bioremediation potentials of Pseudomonas aeruginosa isolated from Makera-Kakuri industrial drain in Kaduna, Nigeria. Eur J Exp Biol 7:3–6. 10.21767/2248-9215.100028

  • Hiller E, Tóth R, Kučerová G, Jurkovič Ľ, Šottník P, Lalinská-Voleková B, Vozár J (2016) Geochemie von Bergematerial aus der Verarbeitung von Siderit-Kupfer-Erzen und Mobilität von ausgewählten Metallen und Metalloiden eines Batch-Auslaugung-Versuche der Slovinky Aufstauung, Ostslowakei. Mine Water Environ 35:447–461. https://doi.org/10.1007/s10230-016-0388-2

    Article  CAS  Google Scholar 

  • Hu HW, Wang JT, Li J, Li JJ, Ma YB, Chen D, He JZ (2016) Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environ Microbiol 18:3896–3909. https://doi.org/10.1111/1462-2920.13370

    Article  CAS  Google Scholar 

  • Jamal Q, Ahmed I, Rehman S et al (2014) Isolation and characterization of bacteria from coal mines of Dara Adam Khel, Pakistan. Geomicrobiol J 33:37–41. https://doi.org/10.1080/01490451.2014.964886

    Article  CAS  Google Scholar 

  • Ji X, Shen Q, Liu F, Ma J, Xu G, Wang Y, Wu M (2012) Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J Hazard Mater 235–236:178–185. https://doi.org/10.1016/j.jhazmat.2012.07.040

    Article  CAS  Google Scholar 

  • Kazaure MB (2018) Distribution of bacteria in lead contaminated soil in Anka local government area, Zamfara state, Nigeria. Acta Sci Microbiol 1:2581–3226

    Google Scholar 

  • Kisková J, Perháčová Z, Vlčko L, Sedláková J, Kvasnová S, Pristaš P (2018) The bacterial population of neutral mine drainage water of Elizabeth’s shaft (Slovinky, Slovakia). Curr Microbiol 75:988–996. https://doi.org/10.1007/s00284-018-1472-6

    Article  CAS  Google Scholar 

  • Knapp CW, McCluskey SM, Singh BK et al (2011) Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS One:6. https://doi.org/10.1371/journal.pone.0027300

  • Knapp CW, Callan AC, Aitken B, Shearn R, Koenders A, Hinwood A (2017) Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environ Sci Pollut Res 24:2484–2494. https://doi.org/10.1007/s11356-016-7997-y

    Article  CAS  Google Scholar 

  • Koděra P, Lexa J, Rankin AH, Fallick AE (2005) Epithermal gold veins in a caldera setting: Banská Hodruša, Slovakia. Miner Depos 39:921–943. https://doi.org/10.1007/s00126-004-0449-5

    Article  CAS  Google Scholar 

  • Li LG, Xia Y, Zhang T (2017) Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J 11:651–662. https://doi.org/10.1038/ismej.2016.155

    Article  CAS  Google Scholar 

  • Lina M, Pirela R, Alirio W, et al (2014) Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region , Venezuela Resistencia a antibioticos y metales pesados en bacterias aisladas de subsuelo en la región El Callao, Venezuela. 141–149

  • Masindi V, Muedi KL (2018) Environmental contamination by heavy metals. Heavy Met. https://doi.org/10.5772/intechopen.76082

  • Metsalu T, Vilo J, Science C, Liivi J (2015) ClustVis : a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. NucleicAcids Res 43:566–570. https://doi.org/10.1093/nar/gkv468

  • Nawab J, Khan S, Shah MT, et al (2015) Quantification of heavy metals in mining affected soil and their bioaccumulation in native plant species quantification of heavy metals in mining affected soil and their bioaccumulation in native plant species. 37–41. https://doi.org/10.1080/15226514.2014.981246

  • Onuoha SC, Okafor CO, Aduo BC (2016) Antibiotic and heavy metal tolerance of bacterial pathogens isolated from agricultural soil 13:236–241. https://doi.org/10.5829/idosi.wjms.2016.236.241

  • Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ (2015) Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 16:1–14. https://doi.org/10.1186/s12864-015-2153-5

    Article  CAS  Google Scholar 

  • Pal C, Asiani K, Arya S et al (2017) Metal resistance and its association with antibiotic resistance. Adv Microb Physiol 70:261–313. https://doi.org/10.1016/bs.ampbs.2017.02.001

    Article  CAS  Google Scholar 

  • Safari Sinegani AA, Younessi N (2017) Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses. J Glob Antimicrob Resist 10:247–255. https://doi.org/10.1016/j.jgar.2017.05.012

    Article  Google Scholar 

  • Schumacher A, Vranken T, Malhotra A, Arts JJC, Habibovic P (2018) In vitro antimicrobial susceptibility testing methods: agar dilution to 3D tissue-engineered models. Eur J Clin Microbiol Infect Dis 37:187–208. https://doi.org/10.1007/s10096-017-3089-2

    Article  CAS  Google Scholar 

  • Seiler C, Berendonk TU (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:1–10. https://doi.org/10.3389/fmicb.2012.00399

    Article  Google Scholar 

  • Sejkora J, Števko M, Ozdín D, Pršek J, Jeleň S (2015) Unusual morphological forms of hodru š ite from the Rozália vein , Hodruša- Unusual morphological forms of hodrušite from the Rozália vein , Hodruša-Hámre near Banská Štiavnica ( Slovak Republic). https://doi.org/10.3190/jgeosci.188

  • Su JQ, Wei B, Ou-Yang WY, et al (2015) Antibiotic resistome and its association with bacterial communities during sewage sludge composting

  • Tomova I, Stoilova-Disheva M, Lazarkevich I, Vasileva-Tonkova E (2015) Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Front Life Sci 8:348–357. https://doi.org/10.1080/21553769.2015.1044130

    Article  CAS  Google Scholar 

  • WHO (2014) Antimicrobial resistance: global report on surveillance. Switzerland, Geneva

    Google Scholar 

  • Yacoub C, Pérez-Foguet A, Miralles N (2012) Trace metal content of sediments close to mine sites in the Andean region. Sci World J: https://doi.org/10.1100/2012/732519, 2012, 1, 12

  • Zhang Y, Gu AZ, Li D et al (2018) Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Environ Pollut 237:74–82. https://doi.org/10.1016/j.envpol.2018.01.032

    Article  CAS  Google Scholar 

  • Zhao Y, Cocerva T, Cox S, Tardif S, Su JQ, Zhu YG, Brandt KK (2019) Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Sci Total Environ 656:512–520. https://doi.org/10.1016/j.scitotenv.2018.11.372

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Slovak Grant Agency for Science VEGA Grant No. 1/0229/17, Slovak Research and Development Agency Grant Nos. APVV-16-0171 and SK-PL-18-0012 and Pavol Jozef Safarik University in Kosice Grant No. VVGS-PF-2019-1044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Timková.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timková, I., Lachká, M., Kisková, J. et al. High frequency of antibiotic tolerance in deep subsurface heterotrophic cultivable bacteria from the Rozália Gold Mine, Slovakia. Environ Sci Pollut Res 27, 44036–44044 (2020). https://doi.org/10.1007/s11356-020-10347-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10347-5

Keywords

Navigation