Skip to main content
Log in

Effects of biochar-immobilized bacteria on phytoremediation of cadmium-polluted soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work is the first report of the ability of biochar-immobilized cadmium-resistant bacteria (CRB) on promoting the efficiency of cadmium phytoextraction by Chlorophytum laxum R.Br. The survival of CRB immobilized on biochar in cadmium-contaminated soil at a concentration of 75.45 mg kg−1 was studied. The results found that both CRB, namely Arthrobacter sp. TM6 and Micrococcus sp. MU1, can survive and grow in cadmium-contaminated soil. To study phytoextraction in the pot experiments, 2-month-old C. laxum was individually planted in cadmium-contaminated soil and divided into four treatments, including (i) untreated control, (ii) biochar, (iii) biochar-immobilized (BC) Arthrobacter sp., and (iv) BC-Micrococcus sp. The results found that biochar-immobilized CRB did not cause any effect to the root lengths and shoot heights of plants compared to the untreated control. Interestingly, inoculation of biochar-immobilized CRB significantly increased cadmium accumulation in the shoots and roots compared to the untreated control. In addition, the highest cadmium content in a whole plant, best phytoextraction performance, and greatest bioaccumulation factor was found in plant inoculated with BC-Micrococcus sp., followed by BC-Arthrobacter sp. In conclusion, inoculation of biochar-immobilized CRB enhanced cadmium accumulation and translocation of cadmium from the roots to shoots, suggesting further applying biochar-immobilized CRB in cadmium-polluted soil for promoting cadmium phytoextraction efficiency of ornamental plants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ab Aziz NS, Mohd Nor MA, Abdul Manaf SF, Hamzah F (2015) Suitability of biochar produced from biomass waste as soil amendment. Procedia Soc Behav Sci 195:2457–2465

    Article  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals: concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Chen B, Yuan M, Qian L (2012) Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. J Soil Sediment 12:1350–1359

    Article  CAS  Google Scholar 

  • Chen L, Gao J, Zhu Q, Wang Y, Yang Y (2018a) Accumulation and output of heavy metals by the invasive plant Spartina alterniflora in a coastal salt marsh. Pedosphere 28:884–894

    Article  Google Scholar 

  • Chen H, Ma J, Wei J, Gong X, Yu X, Guo H, Zhao Y (2018b) Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates. Sci Tot Environ 635:333342

    Article  CAS  Google Scholar 

  • Dzionek A, Wojcieszyńska D, Guzik U (2016) Natural carriers in bioremediation: a review. Electron J Biotechnol 23:28–36

    Article  CAS  Google Scholar 

  • Faust MB, Christians NE (2000) Copper reduces shoot growth and root development of creeping bent grass. Crop Sci 40:498–502

    Article  CAS  Google Scholar 

  • Han H, Sheng X, Hu J, He L, Wang Q (2018) Metal-immobilizing Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 increase biomass and reduce heavy metal accumulation of radish under field conditions. Ecotoxicol Environ Saf 161:526–533

    Article  CAS  Google Scholar 

  • He LY, Chen ZJ, Ren GD, Zhang YF, Qian M, Sheng XF (2009) Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotox Environ Saf 72:1343–1348

    Article  CAS  Google Scholar 

  • Hmid A, Al Chami Z, Sillen W, De Vocht A, Vangronsveld J (2015) Olive mill waste biochar: a promising soil amendment for metal immobilization in contaminated soils. Environ Sci Pollut Res 22:1444–1456

    Article  CAS  Google Scholar 

  • Jézéquel K, Perrin J, Lebeau T (2005) Bioaugmentation with a Bacillus sp. to reduce the phytoavailable Cd of an agricultural soil: Comparison of free and immobilized microbial inocula. Chemosphere 59:1323–1331

    Article  CAS  Google Scholar 

  • Jiang LL, Han GM, Lan Y, Liu SN, Gao JP, Yang X, Meng J, Chen WF (2017) Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates. J Integr Agr 16:713–724

    Article  CAS  Google Scholar 

  • Khaokaew S, Landrot G (2015) A field-scale study of cadmium phytoremediation in a contaminated agricultural soil at Mae Sot district, Tak province, Thailand: (1) Determination of Cd-hyperaccumulating plants. Chemosphere 138:883–887

    Article  CAS  Google Scholar 

  • Khonsue N, Kittisuwan K, Kumsopa A, Tawinteung N, Prapagdee B (2013) Inoculation of soil with cadmium-resistant bacteria enhances cadmium phytoextraction by Vetiveria nemoralis and Ocimum gratissimum. Water Air Soil Pollut 224:1696

    Article  CAS  Google Scholar 

  • Kumar P, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  • Li Y, Liu K, Wang Y, Zhou Z, Chen C, Ye P, Yu F (2018) Improvement of cadmium phytoremediation by Centella asiatica L.after soil inoculation with cadmium-resistant Enterobacter sp. FM-1. Chemosphere 202:280–288

    Article  CAS  Google Scholar 

  • Liu X, Zhang A, Ji C, Joseph S, Bian R, Li L, Pan G, Paz-Ferreiro J (2013) Biochar’s effect on crop productivity and the dependence on experimental conditions: a meta-analysis of literature data. Plant Soil 373:583–594

    Article  CAS  Google Scholar 

  • Liu ZF, Ge HG, Li C, Zhao ZP, Song FM, Hu SB (2015) Enhanced phytoextraction of heavy metals from contaminated soil by plant co-cropping associated with PGPR. Water Air Soil Pollut 226:29

    Article  CAS  Google Scholar 

  • Liu Y, Liu K, Li Y, Yang W, Wu F, Zhu P, Zhang J, Chen L, Gao S, Zhang L (2016) Cadmium contamination of soil and crops is affected by intercropping and rotation systems in the lower reaches of the Minjiang river in south-western China. Environ Geochem Health 38:811–820

    Article  CAS  Google Scholar 

  • Liu J, Ding Y, Ma L, Gao G, Wang Y (2017) Combination of biochar and immobilized bacteria in cypermethrin contaminated soil remediation. Int Biodeterior Biodegrad 120:15–20

    Article  CAS  Google Scholar 

  • Lu K, Yang X, Shen J, Robinson B, Huang H, Liu D, Bolan N, Pei J, Wang H (2014) Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agr Ecosyst Environ 191:124–132

    Article  CAS  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121

    Article  CAS  Google Scholar 

  • Mattina MJI, Lannucci-Berger W, Musante C, White JC (2003) Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut 124:375–378

    Article  CAS  Google Scholar 

  • McGrath SP, Cunliffe CH (1985) A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sewage sludges. J Sci Food Agric 36:794–798

    Article  CAS  Google Scholar 

  • Mitra S, Pramanik K, Sarkar A, Ghosh PK, Soren T, Maiti TK (2018) Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress. Ecotoxicol Environ Saf 156:183–196

    Article  CAS  Google Scholar 

  • Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK (2017) Environmental application of biochar: Current status and perspectives. Bioresour Technol 246:110–122

    Article  CAS  Google Scholar 

  • Pramanik K, Mitra S, Sarkar A, Maiti TK (2018) Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. J Hazard Mater 351:317–329

    Article  CAS  Google Scholar 

  • Prapagdee B, Wankumpha J (2017) Phytoremediation of cadmium-polluted soil by Chlorophytum laxum combined with chitosan-immobilized cadmium-resistant bacteria. Environ Sci Pollut Res 24:19249–19258

    Article  CAS  Google Scholar 

  • Prapagdee B, Chumphonwong N, Khonsue N, Mongkolsuk S (2012) Influence of cadmium resistant bacteria on promoting plant root elongation and increasing cadmium mobilization in contaminated soil. Fresen Environ Bull 21:1186–1191

    CAS  Google Scholar 

  • Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92:659–666

    Article  CAS  Google Scholar 

  • Prapagdee S, Piyatiratitivorakul S, Petsom A, Tawinteung N (2014) Application of biochar for enhancing cadmium and zinc phytostabilization in Vigna radiata L. cultivation. Water Air Soil Pollut 225:2233

    Article  CAS  Google Scholar 

  • Rajkumar M, Ael N, Narasimha M, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Zia-ur-Rehman M, Abbas Z, Hannan F (2017) Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ Geochem Health 39:259–277

    Article  CAS  Google Scholar 

  • Rojjanateeranaj P, Sangthong C, Prapagdee B (2017) Enhanced cadmium phytoremediation of Glycine max L. through bioaugmentation of cadmium-resistant bacteria assisted by biostimulation. Chemosphere 185:764–771

    Article  CAS  Google Scholar 

  • Shute T, Macfie SM (2006) Cadmium and zinc accumulation in soybean: a threat to food safety? Sci Total Environ 371:63–73

    Article  CAS  Google Scholar 

  • Simmons RW, Pongsakul P, Chaney L, Saiyasitpanich D, Klinphoklap S, Nobuntou W (2003) The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean: implications for human health. Plant Soil 257:163–170

    Article  CAS  Google Scholar 

  • Siripan O, Thamchaipenet A, Surat W (2018) Enhancement of the efficiency of Cd phytoextraction using bacterial endophytes isolated from Chromolaena odorata, a Cd hyperaccumulator. Int J Phytoremediat 20:1096–1105

    Article  CAS  Google Scholar 

  • Taiwo AM, Gbadebo AM, Oyedepo JA, Ojekunle ZO, Alo OM, Oyeniran AA, Onalaja OJ, Ogunjimi D, Taiwo OT (2016) Bioremediation of industrially contaminated soil using compost and plant technology. J Hazard Mater 304:166–172

    Article  CAS  Google Scholar 

  • Wang Y, Yan A, Dai J, Wang N, Wu D (2012) Accumulation and tolerance characteristics of cadmium in Chlorophytum comosum: a popular ornamental plant and potential Cd hyperaccumulator. Environ Monit Assess 184:929–937

    Article  CAS  Google Scholar 

  • Wiangkham N, Prapagdee B (2018) Potential of Napier grass with cadmium-resistant bacterial inoculation on cadmium phytoremediation and its possibility to use as biomass fuel. Chemosphere 201:511–518

    Article  CAS  Google Scholar 

  • Xia HP (2004) Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land. Chemosphere 54:345–353

    Article  CAS  Google Scholar 

  • Yang X, Chen A, Wu Q, Xu M (2018) Enhanced phenanthrene degradation in river sediments using a combination of biochar and nitrate. Sci Total Environ 619–620:600–605

    Article  CAS  Google Scholar 

  • Yavari S, Malakahmad A, Sapari NB (2015) Biochar efficiency in pesticides sorption as a function of production variables: a review. Environ Sci Pollut Res 22:13824–13841

    Article  CAS  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  Google Scholar 

  • Zhang X, Xia H, Li Z, Zhuang P, Gao B (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101:2063–2066

    Article  CAS  Google Scholar 

  • Zhang C, Sale PWG, Doronila AI, Clark GJ, Livesay C, Tang C (2014) Australian native plant species Carpobrotus rossii (Haw.) Schwantes shows the potential of cadmium phytoremediation. Environ Sci Pollut Res 21:9843–9851

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank V. Vanitshavit, A. Nisaitrongsrisug, and N. Siribanchachai for their valuable technical assistances. Appreciation is also expressed to Dr. T.N. Stewart for proofreading this article.

Funding

This research was supported by a grant from the Center of Excellence on Biodiversity (grant number BDC-PG1-160003) and the Faculty of Environment and Resource Studies of Mahidol University Alumni Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjaphorn Prapagdee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuaphasuk, C., Prapagdee, B. Effects of biochar-immobilized bacteria on phytoremediation of cadmium-polluted soil. Environ Sci Pollut Res 26, 23679–23688 (2019). https://doi.org/10.1007/s11356-019-05661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05661-6

Keywords

Navigation