Skip to main content
Log in

Temperature sensitivity of different soil carbon pools under biochar addition

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the temperature sensitivity of labile and relatively recalcitrant forest soil carbon (C) pools amended with biochar during short-term incubation. Biochars were prepared using sugar cane residue under pyrolysis temperatures of 300 and 700 °C (i.e., BC300 and BC700), respectively. Coarse particulate organic matter and acid hydrolysis residue were separated from a forest soil and treated as the labile and recalcitrant C pools of the soil, respectively. Temperature sensitivity of the soil C pools was characterized using the Q10 values (i.e., the proportional increase in respiration per 10 °C rise). The increased Q10 values of treatments in the earlier stage were attributable to instantaneously increased aromatic C content. The following decreased Q10 values were related to the consumption of labile C. However, the two types of biochars led to similar Q10 values in the same C pools at the later stage of incubation, which was closely related to the nearly humic-like component content in the dissolved organic matter. The different temporal distributions of Q10 values were attributable to changes of aromatic C content and continuous consumption of labile components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atkinson C, Fitzgerald J, Hipp N (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337: 1–18

  • Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211

    Article  CAS  Google Scholar 

  • Borchard N, Ladd B, Eschemann S, Hegenberg D, Möseler BM, Amelung W (2014) Black carbon and soil properties at historical charcoal production sites in Germany. Geoderma 232:236–242

    Article  CAS  Google Scholar 

  • Cambardella CA, Elliott ET (1992) Particulate organic matter across a grassland cultivation sequence. Soil Sci Soc Am J 56:777–783

    Article  Google Scholar 

  • Chen D, Liu D, Zhang H, Chen Y, Li Q (2015) Bamboo pyrolysis using TG-FTIR and a lab-scale reactor: analysis of pyrolysis behavior, product properties, and carbon and energy yields. Fuel 148: 79–86

    Article  CAS  Google Scholar 

  • Cheng C, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488

    Article  CAS  Google Scholar 

  • Conant RT, Ryan MG, Agren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvonen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Steinweg JM, Wallenstein MD, Wet-terstedt JAM, Bradford MA (2011) Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward. Glob Chang Biol 17:3392–3404

    Article  Google Scholar 

  • Craine JM, Fierer N, McLauchlan KK (2010) Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat Geosci 3:854–857

    Article  CAS  Google Scholar 

  • Criscuoli I, Alberti G, Baronti S, Favilli F, Martinez C, Calzolari C, Pusceddu E, Rumpel C, Viola R, Miglietta F (2014) Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil. PLoS One 9:e91114

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  Google Scholar 

  • Deenik JL, McClellan T, Uehara G, Antal MJ, Campbell S (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74:1259–1270

    Article  CAS  Google Scholar 

  • Fang Y, Singh B, Singh BP, Krull E (2014a) Biochar carbon stability in four contrasting soils. Eur J Soil Sci 65:60–71

    Article  CAS  Google Scholar 

  • Fang Y, Singh BP, Singh B (2014b) Temperature sensitivity of biochar and native carbon mineralisation in biochar-amended soils. Agric Ecosyst Environ 191:158–167

    Article  CAS  Google Scholar 

  • Fang Y, Singh BP, Matta P, Cowie A, Zwieten LV (2017) Temperature sensitivity and priming of organic matter with different stabilities in a vertisol with aged biochar. Soil Biol Biochem 115:346–356

    Article  CAS  Google Scholar 

  • Fissore C, Giardina CP, Kolka RK (2013) Reduced substrate supply limits the temperature response of soil organic carbon decomposition. Soil Biol Biochem 67:306–311

    Article  CAS  Google Scholar 

  • Gershenson A, Bader N, Cheng W (2009) Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Glob Chang Biol 15:176–183

    Article  Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    Article  CAS  Google Scholar 

  • Hamdi S, Moyano F, Sall S, Bernoux M, Chevallier T (2013) Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol Biochem 58:115–126

    Article  CAS  Google Scholar 

  • Hassink J, Whitmore AP (1997) A model of the physical protection of organic matter in soils. Soil Sci Soc Am J 61:131–139

    Article  CAS  Google Scholar 

  • He X, Du Z, Wang Y, Lu N, Zhang Q (2016) Sensitivity of soil respiration to soil temperature decreased under deep biochar amended soils in temperate croplands. Appl Soil Ecol 108:204–210

    Article  Google Scholar 

  • Hernandez-Soriano MC, Kerré B, Goos P, Hardy B, Dufey J, Smolders E (2016a) Long-term effect of biochar on the stabilization of recent carbon: soils with historical inputs of charcoal. Glob Change Biol Bioenergy 8:371–381

    Article  CAS  Google Scholar 

  • Hernandez-Soriano MC, Bart K, Kopittke PM, Benjamin H, Erik S (2016b) Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study. Sci Rep 6:25127

    Article  CAS  Google Scholar 

  • Jamieson T, Sager E, Guéguen C (2014) Characterization of biochar-derived dissolved organic matter using UV-visible absorption and excitation-emission fluorescence spectroscopies. Chemosphere 103:197–204

    Article  CAS  Google Scholar 

  • Jeroen G, Beatriz C, Johan S, Roel M (2010) Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Glob Chang Biol 16:2789–2798

    Article  Google Scholar 

  • Jin H (2010) Characterization of microbial life colonizing biochar and biochar amended soils. Cornell University, Ithaca

    Google Scholar 

  • Joergensen R, Brookes P, Jenkinson D (1990) Survival of the soil microbial biomass at elevated temperatures. Soil Biol Biochem 22:1129–1136

    Article  Google Scholar 

  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, van Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Soil Res 48:501–515

    Article  CAS  Google Scholar 

  • Keith A, Singh B, Singh BP (2011) Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environ Sci Technol 45:9611–9618

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition-still a topic of debate. Soil Biol Biochem 38:2510–2518

    Article  CAS  Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota-a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Leifeld J, Fuhrer J (2005) The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochemistry 75:433–453

    Article  CAS  Google Scholar 

  • Liang BQ, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luizão FJ (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213

    Article  CAS  Google Scholar 

  • Lim SS, Choi WJ (2014) Changes in microbial biomass, CH4 and CO2 emissions, and soil carbon content by fly ash co-applied with organic inputs with contrasting substrate quality under changing water regimes. Soil Biol Biochem 68:494–502

    Article  CAS  Google Scholar 

  • Lützow MV, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review. Eur J Soil Sci 57:426–445

    Article  CAS  Google Scholar 

  • Nguyen BT, Lehmann J, Hockaday WC, Joseph S, Masiello CA (2010) Temperature sensitivity of black carbon decomposition and oxidation. Environ Sci Technol 44:3324–3331

    Article  CAS  Google Scholar 

  • Paul EA, Follett RF, Leavitt SW, Halvorson A, Peterson GA, Lyon DJ (1997) Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Sci Soc Am J 61:1058–1067

    Article  CAS  Google Scholar 

  • Paustian K, Andrén O, Janzen HH, Lal R, Smith P, Tian G, Tiessen H, Van Noordwijk M, Woomer PL (2010) Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag 13:230–244

    Article  Google Scholar 

  • Pei J, Zhuang S, Cui J, Li J, Li B, Wu J, Fang C (2017) Biochar decreased the temperature sensitivity of soil carbon decomposition in a paddy field. Agric Ecosyst Environ 249:156–164

    Article  CAS  Google Scholar 

  • Plante AF, Conant RT, Carlson J, Greenwood R, Shulman JM, Haddix ML, Paul EA (2010) Decomposition temperature sensitivity of isolated soil organic matter fractions. Soil Biol Biochem 42:1991–1996

    Article  CAS  Google Scholar 

  • Singh BP, Cowie AL (2014) Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci Rep 4:3687

    Article  CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Song F, Wu F, Guo F, Wang H, Feng W, Zhou M, Deng Y, Bai Y, Xing B, Giesy JP (2017) Interactions between stepwise-eluted sub-fractions of fulvic acids and protons revealed by fluorescence titration combined with EEM-PARAFAC. Sci Total Environ 58:605–606

    CAS  Google Scholar 

  • Song F, Wu F, Xing B, Li T, Feng W, Giesy JP, Guo W, Wang H, Liu S, Bai Y (2018a) Protonation-dependent heterogeneity in fluorescent binding sites in sub-fractions of fulvic acid using principal component analysis and two-dimensional correlation spectroscopy. Sci Total Environ 616:1279–1287

    Article  CAS  Google Scholar 

  • Song F, Wu F, Feng W, Tang Z, Giesy JP, Guo F, Shi D, Liu X, Qin N, Xing B, Bai Y (2018b) Fluorescence regional integration and differential fluorescence spectroscopy for analysis of structural characteristics and proton binding properties of fulvic acid sub-fractions. J Environ Sci 74:116–125

    Article  Google Scholar 

  • Spokas KA (2010) Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon 1:289–303

    Article  CAS  Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310

    Article  CAS  Google Scholar 

  • Sun J, Wang B, Gang X, Shao H (2014) Effects of wheat straw biochar on carbon mineralization and guidance for large-scale soil quality improvement in the coastal wetland. Ecol Eng 62:43–47

    Article  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173

    Article  CAS  Google Scholar 

  • Wagai R, Kishimoto-Mo AW, Yonemura S, Shirato Y, Hiradate S, Yagasaki Y (2013) Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility. and microbial physiology Glob Change Biol 19:1114–1125

    Article  Google Scholar 

  • Wang Y, Fang L, Lin L, Lin L, Luan T, Tam NF (2014) Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons. Chemosphere 99: 152–159

    Article  CAS  Google Scholar 

  • Wang Q, Liu S, Tian P (2018) Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Glob Chang Biol 24:2841–2849

    Article  Google Scholar 

  • Zhou G, Zhou X, Zhang T, Du Z, He Y, Wang X, Shao J, Cao Y, Xue S, Wang H, Xu C (2017) Biochar increased soil respiration in temperate forests but had no effects in subtropical forests. Forest Ecol Manag 405:339–349

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renduo Zhang.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, G., Wang, S. et al. Temperature sensitivity of different soil carbon pools under biochar addition. Environ Sci Pollut Res 26, 4130–4140 (2019). https://doi.org/10.1007/s11356-018-3822-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3822-0

Keywords

Navigation