Skip to main content
Log in

Growth, physiological responses, and copper accumulation in seven willow species exposed to Cu—a hydroponic experiment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Selecting plant species, especially woody species, that can tolerate and accumulate high levels of heavy metals is crucial for the purpose of phytoremediation. In the present study, seven willow species/clones were evaluated for their variations in copper (Cu) tolerance, Cu accumulation, and their relative physiological responses, when exposed to different doses of Cu (control, 15, and 120 μM) in a hydroponic system for 40 days. Upon Cu exposure, all tested willow species/clones (Salix, S.) remained relative normal growth, albeit with some visual evidence of Cu toxicity observed. Seven willow species remained relative high total biomass with tolerance index > 0.6 when being exposed to 120 μM Cu, suggesting their high Cu tolerance. Exposure to 120 μM Cu resulted in notable declines (16.3–76.1%) in photosynthesis in all willow species. Increases in the soluble sugar content and decreases in the soluble protein content in the leaves of five willow species (S. integra “Yizhibi”, S. jiangsuensis “J172”, S. matsudana 14, S. matsudana 25, S. matsudana 89) were found in the 120 μM Cu treatment. The majority of Cu mainly accumulated in the roots, ranging from 1916 to 26,244 mg kg−1 DW. Principal component analysis and membership function analysis suggested that S. matsudana 89 and S. matsudana 25 showed much higher biomass and accumulation ability than the other species. This suggests that these two willow clones could be used as potential candidates for the phytostabilization of Cu in contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albarracín V, Amoroso MJ, Abate CM (2010) Bioaugmentation of copper polluted soil microcosms with Amycolatopsis tucumanensis to diminish phytoavailable copper for Zea mays plants. Chemosphere 79:131–137

    Article  CAS  Google Scholar 

  • Ali MB, Vajpayee P, Tripathi RD, Rai UN, Singh SN, Singh SP (2003) Phytoremediation of lead, nickel and copper by Salix acmophylla Boiss: role of antioxidant enzymes and antioxidant substances. Bull Environ Contam Tox 70:462–469

  • Ashraf M, Arfan M (2005) Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging. Biol Plant 49:459–462

    Article  Google Scholar 

  • Bhaduri AM, Fulekar MH (2012) Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Biotechnol 11:55–69

    Article  CAS  Google Scholar 

  • Borghi M, Tognetti R, Monteforti G, Sebastiania L (2007) Responses of Populus × euramericana (P. deltoides × P. nigra) clone Adda to increasing copper concentrations. Environ Exp Bot 61:66–73

    Article  CAS  Google Scholar 

  • Borghi M, Tognetti R, Monteforti G, Sebastiania L (2008) Responses of two poplar species (Populus alba and Populus × canadensis) to high copper concentrations. Environ Exp Bot 62:290–299

    Article  CAS  Google Scholar 

  • Cao YN, Ma CX, Chen GC, Zhang JF, Xing BS (2017) Physiological and biochemical responses of Salix integra Thunb. under copper stress as affected by soil flooding. Environ Pollut 225:644–653

    Article  CAS  Google Scholar 

  • Chen GC, Liu ZK, Zhang JF, Owens G (2012a) Phytoaccumulation of copper in willow seedlings under different hydrological regimes. Ecol Eng 44:285–289

    Article  Google Scholar 

  • Chen XJ, Min DH, Yasir TA, Hu YG (2012b) Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crop Res 137:195–201

    Article  Google Scholar 

  • Choudhary M, Jetley UK, Abash Khan M, Zutshi S, Fatma T (2007) Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Saf 66:204–209

    Article  CAS  Google Scholar 

  • Dos Santos Utmazian MN, Wieshammer G, Vega R, Wenzel WW (2007) Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willow and poplars. Environ Pollut 148:155–165

    Article  CAS  Google Scholar 

  • Doumett S, Lamperi L, Checchini L, Azzarello E, Mugnai S, Mancuso S, Petruzzelli G, Bubba MD (2008) Heavy metal distribution between contaminated soil and Paulownia tomentosa in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere 72:1481–1490

    Article  CAS  Google Scholar 

  • Drzewiecka K, Mleczek M, Gasecka M, Magdziak Z, Goliński P (2012) Changes in Salix viminalis L. cv. ‘Cannabina’ morphology and physiology in response to nickel ions—hydroponic investigations. J Hazard Mater 217-218:429–438

    Article  CAS  Google Scholar 

  • Drzewiecka K, Mleczek M, Gasecka M, Magdziak Z, Goliński P, Chadzinikolau T (2014) Copper phytoextraction with Salix purpurea × viminalis under various Ca/Mg ratios. Part 2. Effect on organic acid, phenolics and salicylic acid contents. Acta Physiol Plant 36:903–913

    Article  CAS  Google Scholar 

  • Drzewiecka K, Mleczek M, Gasecka M, Magdziak Z, Budka A, Chadzinikolau T, Kaczmarek Z, Goliński P (2017) Copper and nickel co-treatment alters metal uptake and stress parameters of Salix purpurea × viminalis. J Plant Physiol 216:125–134

    Article  CAS  Google Scholar 

  • Evlard A, Sergeant K, Printz B, Guignard C, Renaut J, Campanella B, Paul R, Hausman JF (2014a) A multiple-level study of metal tolerance in Salix fragilis and Salix aurita clones. J Proteome 101:113–129

    Article  CAS  Google Scholar 

  • Evlard A, Sergeant K, Ferrandis S, Printz B, Renaut J, Guignard C, Paul R, Hausman JF, Campanella B (2014b) Physiological and proteomic responses of different willow clones (Salix fragilis × alba) exposed to dredged sediment contaminated by heavy metals. Int J Phytoremediation 16:1148–1169

    Article  CAS  Google Scholar 

  • Fernàdez J, Zacchini M, Fleck I (2012) Photosynthetic and growth responses of Populus clones Eridano and 1–214 submitted to elevated Zn concentrations. J Geochem Explor 123:77–86

    Article  CAS  Google Scholar 

  • Ghaderian SM, Ali A, Ravandi G (2012) Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. J Geochem Explor 123:25–32

    Article  CAS  Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Hashem HA (2014) Cadmium toxicity induces lipid peroxidation and alters cytokinin content and antioxidant enzyme activities in soybean. Botany-Botanique 92:1–7

    Article  CAS  Google Scholar 

  • He JL, Qin JJ, Long LY, Ma YL, Li H, Li K, Jiang XN, Liu TX, Polle A, Liang ZS, Luo ZB (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol Plant 143:50–63

    Article  CAS  Google Scholar 

  • He JL, Ma CF, Ma YL, Li H, Kang JQ, Liu TX, Polle A, Peng CH, Luo ZB (2013) Cadmium tolerance in six poplar species. Environ Sci Pollut Res 20:163–174

    Article  CAS  Google Scholar 

  • Huang GY, Wang YS (2010) Physiological and biochemical responses in the leaves of two mangrove plant seedlings (Kandeliacandel and Bruguieragymnorrhiza) exposed to multiple heavy metals. J Hazard Mater 182:848–854

    Article  CAS  Google Scholar 

  • Kaplan O, Ince M, Yaman M (2011) Sequential extraction of cadmium indifferent soil phases and plant parts from a former industrialized area. Environ Chem Lett 9:397–404

    Article  CAS  Google Scholar 

  • Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    Article  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  CAS  Google Scholar 

  • Küpper H, Götz B, Mijovilovich A (2009) Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiol 151:702–714

    Article  CAS  Google Scholar 

  • Kuzovkina YA, Volk TA (2009) The characterization of willow (Salix L.) varieties for use in ecological engineering applications: co-ordination of structure, function and autecology. Ecol Eng 35:1178–1189

    Article  Google Scholar 

  • Li H, Li MC, Luo J, Cao X, Qu L, Gai Y, Jiang XN, Liu TX, Bai H, Janz D, Polle A, Peng CH, Luo ZB (2012) N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow and fast-growing Populus species. J Exp Bot 63:6173–6185

    Article  CAS  Google Scholar 

  • Lux A, Šottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 120:537–545

    Article  CAS  Google Scholar 

  • Mehmood T, Chaudhry M, Tufail M, Irfan N (2009) Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchem J 91:94–99

    Article  CAS  Google Scholar 

  • Mleczek M, Rutkowski P, Goliński P, Kaczmarek Z, Szentner K, Waliszewska B, Stolarski M, Szczukowski S (2017) Biological diversity of Salix taxa in Cu, Pb and Zn phytoextraction from soil. Int J Phytoremediation 19:121–132

    Article  CAS  Google Scholar 

  • Morsch VM, Schetinger MRC, Martins AF, Rocha JBT (2002) Effects of cadmium, lead, mercury and zinc on δ-aminolevulinic acid dehydratase activity from radish leaves. Biol Plant 45:85–89

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Pandhair V, Sekhon BS (2006) Reactive oxygen species and antioxidants in plants: an overview. J Plant Biochem Biotechnol 15:71–78

    Article  CAS  Google Scholar 

  • Peñarrubia L, Andrés-Colás N, Moreno J, Puig S (2010) Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator? J Biol Inorg Chem 15:29–36

    Article  CAS  Google Scholar 

  • Pietrini F, Zacchini M, Iori V, Pietrosanti L, Pietrosanti L, Massacci A (2010) Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. Int J Phytoremediation 12:105–120

    Article  CAS  Google Scholar 

  • Punshon T, Dickinson NM (1997) Acclimation of Salix to metal stress. New Phytol 137:303–314

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Shu W, Yang K, Zhang ZQ, Yang B, Lan CY (2001) Flora and heavy metals in dominant plants growing on an ancient copper spoil heap on Tonglushan in HuBei province China. Chin J Appl Environ Biol 7:7–12

    Google Scholar 

  • Simkin AJ, Moreau H, Kuntz M, Pagny G, Lin C, Tanksley S, McCarthy J (2008) An investigation of carotenoid biosynthesis in Coffeacanephora and Coffeaarabica. J Plant Physiol 165:1087–1106

    Article  CAS  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  CAS  Google Scholar 

  • Tamás L, Dudiková J, Durceková K, Halusková L, Huttová J, Mistrík I, Ollé M (2008) Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J Plant Physiol 165:1193–1203

    Article  CAS  Google Scholar 

  • Toppi LSD, Castagna A, Andreozzi E, Careri M, Predieri G, Vurro E, Vurro A (2009) Occurrence of different inter-varietal and inter-organ defence strategies towards supra-optimal zinc concentrations in two cultivars of Triticum aestivum L. Environ Exp Bot 66:220–229

    Article  CAS  Google Scholar 

  • Wang SF, Shi X, Sun HJ, Chen YT, Pan HW, Yang XE, Rafiq T (2014) Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead. PLoS One 9:e108568

    Article  CAS  Google Scholar 

  • Watson C, Pulford ID, Riddell-Black D (2003) Screening of willow species for resistance to heavy metals: comparison of performance in hydroponics system and field trials. In J Phytoremediation 5:351–365

    Article  CAS  Google Scholar 

  • Wei CY, Chen TB (2001) Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad. Acta Ecol Sin 21:1196–1203

    Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Yang WD, Ding ZL, Zhao FL, Wang YY, Zhang XC, Zhu ZQ, Yang XE (2015a) Comparison of manganese tolerance and accumulation among 24 Salix clones in a hydroponic experiment: application for phytoremediation. J Geochem Explor 149:1–7

    Article  CAS  Google Scholar 

  • Yang WD, Zhao FL, Zhang XC, Ding ZL, Wang YY, Zhu ZQ, Yang XE (2015b) Variations of cadmium tolerance and accumulation among 39 Salix clones: implications for phytoextraction. Environ Earth Sci 73:3263–3274

    Article  CAS  Google Scholar 

  • Yanqun Z, Yuan L, Schvartz C, Langlade L, Fan L (2004) Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. Environ Int 30:567–576

    Article  CAS  Google Scholar 

  • Zhang C, Liu F, Kong W, He Y (2015) Application of visible and near-infrared hyperspectral imaging to determine soluble protein content in oilseed rape leaves. Sensors 15:16576–16588

    Article  CAS  Google Scholar 

  • Zhivotovsky OP, Kuzovkina JA, Schulthess CP, Morris T, Pettinelli D, Ge M (2010) Hydroponic screening of willows (Salix L.) for lead tolerance and accumulation. Int J Phytoremediation 13:75–94

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (31470619) and the Key Research and Development Program of Zhejiang Province, China (2018C03047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haimei Li or Guangcai Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible editor: Elena Maestri

Electronic supplementary material

ESM 1

(DOCX 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Zhang, Y., Ma, C. et al. Growth, physiological responses, and copper accumulation in seven willow species exposed to Cu—a hydroponic experiment. Environ Sci Pollut Res 25, 19875–19886 (2018). https://doi.org/10.1007/s11356-018-2106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2106-z

Keywords

Navigation