Skip to main content
Log in

Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Lead (Pb) is considered one the most hazardous pollutant, and its accumulation in soil and plants is of prime concern. To understand the role of plant hormones in combating heavy metal stress, the present study was planned to assess the interactive effects of 24-epibrassinolide (EBL) (10−7 M) and salicylic acid (SA) (1 mM) in regulating growth, pigment contents, antioxidative defense response, and gene expression in Brassica juncea L. seedlings exposed to different concentrations of Pb metal (0.25, 0.50, and 0.75 mM). Reduction in root and shoot lengths, chlorophyll and carotenoid content, and non-enzymatic antioxidants like glutathione, ascorbic acid, and tocopherol in response to Pb toxicity was observed. The enzymatic antioxidants such as guaiacol peroxidase (POD), ascorbate peroxidase (APOX), glutathione peroxidase (GR), dehydroascorbate reductase (DHAR), monodehydroascorbate redductase (MDHAR), glutathione-S-transferease (GST), and glutathione peroxidase (GPOX) were lowered in response to Pb treatments. Other antioxidative enzymes including superoxide dismutase (SOD), catalase (CAT), and polyphenol oxidase (PPO) enhanced under metal stress. Co-application of EBL + SA to 0.75 mM Pb-treated seedlings resulted in improvement of root and shoot lengths, chlorophyll, and carotenoid contents. Similarly, glutathione, ascorbic acid, and tocopherol contents were also elevated. Enzymatic antioxidants were also significantly enhanced in response to pre-sowing combined treatment of both hormones. Gene expression analysis suggested elevation in expression of CAT, POD, GR, DHAR, and GST genes by application of EBL. Our results reveal that Pb metal toxicity caused adverse impact on B. juncea L. seedlings, but pre-soaking treatment with EBL and SA individually and in combination help seedlings to counter the ill effects of Pb by improving growth, contents of pigment, and modulation of antioxidative defense system. The combined application of EBL and SA was found to be more effective in ameliorating Pb stress as compared to their individual treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Researchat King Saud University, Riyadh, Saudi Arabia, for funding this research group (No. RG-1438-039).

The University Grant Commission, Government of India (Maulana Azad National Fellowship), is also acknowledged for their support.

Author information

Authors and Affiliations

Authors

Contributions

SKK, RB, and PA designed the experiment. SKK, NH, VG, AS, RB, and PAH have worked on the writing of the manuscript. LW and MNA carried out statistical analysis, revision, and formatting of paper.

Corresponding authors

Correspondence to Renu Bhardwaj or Parvaiz Ahmad.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 13.2 kb)

ESM 2

(XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohli, S.K., Handa, N., Sharma, A. et al. Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ Sci Pollut Res 25, 15159–15173 (2018). https://doi.org/10.1007/s11356-018-1742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1742-7

Keywords

Navigation