Skip to main content
Log in

Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study presents a performance comparison of Fe(II)-catalyzed sodium percarbonate (SPC), Fe(II)-EDDS-catalyzed SPC, and of the innovative hydroxylamine hydrochloride (HA)-Fe(II)-EDDS-catalyzed SPC for the degradation of trichloroethylene (TCE) in water. TCE degradation was greater in the Fe(II)-EDDS-catalyzed SPC system compared to the Fe(II)-catalyzed SPC system, indicating the effectiveness of adding EDDS as an enhancement factor for the removal of TCE. Moreover, TCE degradation was faster in the HA-Fe(II)-EDDS-catalyzed SPC system compared to the Fe(II)-EDDS-catalyzed SPC system, illustrating that HA can play a synergistic role in TCE degradation. Analysis of iron distribution in the three systems demonstrated that EDDS addition maintained iron in soluble form, and that the generation of soluble ferrous from ferric iron was expedited with addition of HA. Studies using nitrobenzene and carbon tetrachloride probes provided insights on the generation of hydroxyl radical (HO) and superoxide anion radical (O2•−) in the three systems. A gradual increasing contribution of O2•− to TCE removal in Fe(II)-catalyzed SPC, Fe(II)-EDDS-catalyzed SPC, and HA-Fe(II)-EDDS-catalyzed SPC systems was verified through free-radical scavenger tests. Finally, monitoring of Cl concentrations manifested the complete dechlorination of TCE. A possible mechanism of TCE degradation involving two pathways of HO oxidation and O2•− reaction was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Buxton G, Greenstock C, Helman W, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O) in aqueous solution. J Phys Chem Ref Data 17(2):513–886

    Article  CAS  Google Scholar 

  • Calderwood TS, Jr NRC, Sawyer DT (1983) Oxygenation of chloroalkenes by superoxide in aprotic media. J Am Chem Soc 105(10):3337–3339

    Article  CAS  Google Scholar 

  • Chen L, Ma J, Li X, Zhang J, Fang J, Guan Y, Xie P (2011) Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous Iron cycles. Environ Sci Technol 45(9):3925–3930

    Article  CAS  Google Scholar 

  • Elshafei G, Yehia F, Dimitry O, Badawi A, Eshaq G (2010) Degradation of nitrobenzene at near neutral pH using Fe2+-glutamate complex as a homogeneous Fenton catalyst. Appl Catal B Environ 99(1):242–247

    Article  CAS  Google Scholar 

  • Fu X, Gu X, Lu S, Miao Z, Xu M, Zhang X, Qiu Z, Sui Q (2015) Benzene depletion by Fe2+-catalyzed sodium percarbonate in aqueous solution. Chem Eng J 267:25–33

    Article  CAS  Google Scholar 

  • Fu X, Gu X, Lu S, Miao Z, Xu M, Zhang X, Danish M, Cui H, Usman F, Qiu Z, Sui Q (2016a) Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex. Environ Sci Pollut Res 23(7):6758-6766

  • Fu X, Gu X, Lu S, Xu M, Miao Z, Zhang X, Zhang Y, Xue Y, Qiu Z, Sui Q (2016b) Enhanced degradation of benzene in aqueous solution by sodium percarbonate activated with chelated-Fe(II). Chem Eng J 285:180–188

    Article  CAS  Google Scholar 

  • Gibian MJ, Sawyer DT, Ungermann T, Tangpoonpholvivat R, Morrison MM (1979) Reactivity of superoxide ion with carbonyl compounds in aprotic solvents. J Am Chem Soc 101(3):640–644

    Article  CAS  Google Scholar 

  • Gu X, Lu S, Qiu Z, Sui Q, Miao Z, Lin K, Liu Y, Luo Q (2012) Comparison of photodegradation performance of 1,1,1-trichloroethane in aqueous solution with the addition of H2O2 or S2O8 2− oxidants. Ind Eng Chem Res 51:7196–7204

    Article  CAS  Google Scholar 

  • Haag W, Yao C (1992) Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol 26(5):1005–1013

    Article  CAS  Google Scholar 

  • Huang W, Brigante M, Wu F, Mousty C, Hanna K, Mailhot G (2013) Assessment of the Fe(III)-EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A. Environ Sci Technol 47(4):1952–1959

    Article  CAS  Google Scholar 

  • Jhoa EH, Singhala N, Turner S (2010) Fenton degradation of tetrachloroethene and hexachloroethane in Fe(II) catalyzed systems. J Hazard Mater 184(1–3):234–240

    Article  CAS  Google Scholar 

  • Kim H, Hong H, Jung J, Kim S, Yang J (2010) Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J Hazard Mater 176:1038–1043

    Article  CAS  Google Scholar 

  • Lei Y, Zhang H, Wang J, Ai J (2015) Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system. Chem Eng J 270:73–79

    Article  CAS  Google Scholar 

  • Li K, Stefan MI, Crittenden JC (2007) Trichloroethene degradation by UV/H2O2 advanced oxidation process: product study and kinetic modeling. Environ Sci Technol 41(5):1696–1703

    Article  CAS  Google Scholar 

  • Liang C, Lee I (2008) In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination—a proof of concept study. J Contam Hydrol 100(3–4):91–100

    Article  CAS  Google Scholar 

  • Liang C, Wang Z, Bruell C (2007) Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66(1):106–113

    Article  CAS  Google Scholar 

  • Lind J, Merényi G (2006) Kinetic and thermodynamic properties of the aminoxyl (NH2O) radical. J Phys Chem A 110(1):192–197

    Article  CAS  Google Scholar 

  • Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28(12):2045–2053

    Article  CAS  Google Scholar 

  • Miao Z, Gu X, Lu S, Zang X, Wu X, Xu M, Ndong LBB, Qiu Z, Sui Q, Fu GY (2015) Perchloroethylene (PCE) oxidation by percarbonate in Fe2+-catalyzed aqueous solution: PCE performance and its removal mechanism. Chemosphere 119:1120–1125

    Article  CAS  Google Scholar 

  • Oh SY, Kang SG, Kim DW, Chiu PC (2011) Degradation of 2,4-dinitrotoluene by persulfate activated with iron sulfides. Chem Eng J 172(2):641–646

    Article  CAS  Google Scholar 

  • Phenrat T, Thongboot T, Lowry GV (2015) Electromagnetic induction of zerovalent iron (ZVI) powder and nanoscale zerovalent iron (NZVI) particles enhances dechlorination of trichloroethylene in contaminated groundwater and soil: proof of concept. Environ Sci Technol 50(2):872–880

    Article  CAS  Google Scholar 

  • Ranc B, Faure P, Croze V (2016) M.O. Simonnot, selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 312:280–297

    Article  CAS  Google Scholar 

  • Seol Y, Javandel I (2008) Citric acid-modified Fenton’s reaction for the oxidation of chlorinated ethylenes in soil solution systems. Chemosphere 72(4):537–542

    Article  CAS  Google Scholar 

  • Sindelar HR, Brown MT, Boyer TH (2014) Evaluating UV/H2O2, UV/percarbonate, and UV/perborate for natural organic matter reduction from alternative water sources. Chemosphere 105:112–118

    Article  CAS  Google Scholar 

  • Tamura H, Goto K, Yotsuyanagi T, Nagayama M (1974) Spectrophotometric determination of iron (II) with 1, 10-phenanthroline in the presence of large amounts of iron (III). Talanta 21(4):314–318

    Article  CAS  Google Scholar 

  • Teerakun M, Reungsang A, Lin C, Liao C (2011) Coupling of zero valent iron and biobarriers for remediation of trichloroethylene in groundwater. J Environ Sci 23(4):560–567

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (2009) National Primary Drinking Water Regulations. EPA 816-F-09-004

  • Venny, Gan S, Ng HK (2012) Inorganic chelated modified-Fenton treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Chem Eng J 180:1–8

    Article  CAS  Google Scholar 

  • Viisimaa M, Goi A (2014) Use of hydrogen peroxide and percarbonate to treat chlorinated aromatic hydrocarbon-contaminated soil. J Environ Eng Lands 22(1):30–39

    Article  Google Scholar 

  • Waldemer RH, Tratnyek PG (2006) Kinetics of contaminant degradation by permanganate. Environ Sci Technol 40(3):1055–1061

    Article  CAS  Google Scholar 

  • Watts RJ, Teel AL (2005) Chemistry of modified Fenton’s reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation. J Environ Eng 131(4):612–622

    Article  CAS  Google Scholar 

  • Yu XY, Barker JR (2003) Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism. J Phys Chem A 107(9):1313–1324

    Article  CAS  Google Scholar 

  • Yuan B, Chen Y, Fu M (2012) Degradation efficiencies and mechanisms of trichloroethylene (TCE) by controlled-release permanganate (CRP) oxidation. Chem Eng J 192:276–283

    Article  CAS  Google Scholar 

  • Zhang X, Gu X, Lu S, Miao Z, Xu M, Fu X, Qiu Z, Sui Q (2015) Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion. J Hazard Mater 284:253–260

    Article  CAS  Google Scholar 

  • Zhao D, Liao X, Yan X, Huling SG, Chai T, Tao H (2013) Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J Hazard Mater 254-255(254):228–235

    Article  CAS  Google Scholar 

  • Zou J, Ma J, Chen L, Li X, Guan Y, Xie P, Pan C (2013) Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine. Environ Sci Technol 47(20):11685–11691

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the grant from the National Natural Science Foundation of China (41373094, 21577033, and 51208199) and Natural Science Foundation of Shanghai (16ZR1407200). The contributions of Mark Brusseau were supported by the NIEHS Superfund Research Program (P42 ES04940). D. D. Dionysiou also acknowledges support from the University of Cincinnati through a UNESCO co-Chair Professor position on “Water Access and Sustainability” and the Herman Schneider Professorship in the College of Engineering and Applied Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueke Zang or Shuguang Lu.

Additional information

Responsible editor: Vítor Pais Vilar

Electronic supplementary material

ESM 1

(DOC 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Dionysiou, D.D., Brusseau, M.L. et al. Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation. Environ Sci Pollut Res 25, 15733–15742 (2018). https://doi.org/10.1007/s11356-018-1708-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1708-9

Keywords

Navigation