Skip to main content
Log in

Intercropping efficiency of four arsenic hyperaccumulator Pteris vittata populations as intercrops with Morus alba

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Soils that are slightly or moderately contaminated with arsenic (As) can be safely utilized by intercropping As hyperaccumulator Pteris vittata with cash crops. Introducing hyperaccumulators into crop planting systems results in the alleviation of the adverse effects of As and competition effect for resources. The balance between these two effects determines intercropping efficiency. The effect of using different hyperaccumulator populations on such balance is the focus of this study. Through a tank experiment, four P. vittata populations were compared on the basis of their intercropping efficiencies and physiological and morphological characteristics. The evaluation of the intercropping efficiency of P. vittata was mainly based on the capabilities of the species to promote growth and decrease As concentrations in intercropped Morus alba. Two populations of P. vittata were appropriate for intercropping with M. alba, with the alleviation effect of As harm as the main effect on the intercropping system. These populations showed extensive root overlap with M. alba and efficient uptake of bioavailable As, thus depleting As in the rhizosphere and lowering As risk. After different P. vittata populations were used, varied interspecific interactions were observed. Root overlap and aboveground morphological parameters are the key factors determining intercropping efficiency among P. vittata populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Azari P, Bostani AA (2017) Reducing As availability in calcareous soils using nanoscale zero valent iron. Environ Sci Pollut Res 24:20438–20445

    Article  CAS  Google Scholar 

  • Borden KA, Thomas SC, Isaac ME (2017) Interspecific variation of tree root architecture in a temperate agroforestry system characterized using ground-penetrating radar. Plant Soil 410:323–334

    Article  CAS  Google Scholar 

  • Caille N, Zhao FJ, McGrath SP (2005) Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. New Phytol 165:755–761

    Article  CAS  Google Scholar 

  • Chandrashekhar AK, Chandrasekharam D, Farooq SH (2016) Contamination and mobilization of arsenic in the soil and groundwater and its influence on the irrigated crops, Manipur Valley, India. Environ Earth Sci 75

  • Coutinho PWR, de Oliveira PSR, Echer MD, Cadorin DA, Vanelli J (2017) Establishment of intercropping of beet and chicory depending on soil management. Rev Cienc Agron 48:674–682

    Article  Google Scholar 

  • Cutler WG, Brewer RC, El-Kadi A, Hue NV, Niemeyer PG, Peard J, Ray C (2013) Bioaccessible arsenic in soils of former sugar cane plantations, Island of Hawaii. Sci Total Environ 442:177–188

    Article  CAS  Google Scholar 

  • Das S, Chou ML, Jean JS, Yang HJ, Kim PJ (2017) Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata. J Hazard Mater 325:279–287

    Article  CAS  Google Scholar 

  • Ebrahimi E, Kaul HP, Neugschwandtner RW, Nassab ADM (2017) Productivity of wheat (Triticum aestivum L.) intercropped with rapeseed (Brassica napus L.) Can J Plant Sci 97:557–568

    Google Scholar 

  • Forino LMC, Castiglione MR, Bartoli G, Balestri M, Andreucci A, Tagliasacchi AM (2012) Arsenic-induced morphogenic response in roots of arsenic hyperaccumulator fern Pteris vittata. J Hazard Mater 235:271–278

    Article  Google Scholar 

  • Fu JW, Liu X, Han YH, Mei HY, Cao Y, de Oliveira LM, Liu YG, Rathinasabapathi B, Chen YS, Ma LQ (2017) Arsenic-hyperaccumulator Pteris vittata efficiently solubilized phosphate rock to sustain plant growth and As uptake. J Hazard Mater 330:68–75

    Article  CAS  Google Scholar 

  • Garland G, Bunemann EK, Oberson A, Frossard E, Six J (2017) Plant-mediated rhizospheric interactions in maize-pigeon pea intercropping enhance soil aggregation and organic phosphorus storage. Plant Soil 415:37–55

    Article  CAS  Google Scholar 

  • Glowacka A (2014) The influence of strip cropping and adjacent plant species on the content and uptake of N, P, K, Mg and Ca by maize (Zea mays L.) Rom Agric Res 31:219–227

    Google Scholar 

  • Gonzaga MIS, Santos JAG, Comerford NB, Ma LQ (2007) Comparison of root-system efficiency and arsenic uptake of two fern species. Commun Soil Sci Plant Anal 38:1163–1177

    Article  CAS  Google Scholar 

  • Gonzaga MIS, Santos JAG, Ma LQ (2008) Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: repeated harvests and arsenic redistribution. Environ Pollut 154:212–218

    Article  CAS  Google Scholar 

  • Huang GX, Chen ZY, Sun JC, Liu F, Wang J, Zhang Y (2015) Effect of sample pretreatment on the fractionation of arsenic in anoxic soils. Environ Sci Pollut Res 22:8367–8374

    Article  CAS  Google Scholar 

  • Jayasumana C, Fonseka S, Fernando A, Jayalath K, Amarasinghe M, Siribaddana S, Gunatilake S, Paranagama P (2015) Phosphate fertilizer is a main source of arsenic in areas affected with chronic kidney disease of unknown etiology in Sri Lanka. Springerplus, pp 4

  • Kidd P, Mench M, Alvarez-Lopez V, Bert V, Dimitriou I, Friesl-Hanl W, Herzig R, Janssen JO, Kolbas A, Muller I, Neu S, Renella G, Ruttens A, Vangronsveld J, Puschenreiter M (2015) Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int J Phytoremediat 17:1005–1037

    Article  CAS  Google Scholar 

  • Lessl JT, Luo J, Ma LQ (2014) Pteris vittata continuously removed arsenic from non-labile fraction in three contaminated-soils during 3.5 years of phytoextraction. J Hazard Mater 279:485–492

    Article  CAS  Google Scholar 

  • Li S-W, Liu X, Sun H-J, Li M-Y, Zhao D, Luo J, Li H-B, Ma LQ (2017) Effect of phosphate amendment on relative bioavailability and bioaccessibility of lead and arsenic in contaminated soils. J Hazard Mater 339:256–263

    Article  CAS  Google Scholar 

  • Lin LY, Yan XL, Liao XY, Zhang YX, Ma X (2015) Arsenic accumulation in Panax notoginseng monoculture and intercropping with Pteris vittata. Water Air Soil Pollut 226

  • Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5:396–410

    Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic—a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579–579

    Article  CAS  Google Scholar 

  • Ma L, Yang ZG, Li L, Wang L (2016) Source identification and risk assessment of heavy metal contaminations in urban soils of Changsha, a mine-impacted city in Southern China. Environ Sci Pollut Res 23:17058–17066

    Article  CAS  Google Scholar 

  • Morris RA, Garrity DP (1993) Resource capture and utilization in intercropping; non-nitrogen nutrients. Field Crop Res 34:319–334

    Article  Google Scholar 

  • Poynton CY, Huang JWW, Blaylock MJ, Kochian LV, Elless MP (2004) Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta 219:1080–1088

    Article  CAS  Google Scholar 

  • Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML (2017) Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ 581:209–220

    Article  Google Scholar 

  • Puschenreiter M, Wieczorek S, Horak O, Wenzel WW (2003) Chemical changes in the rhizosphere of metal hyperaccumulator and excluder Thlaspi species. J Plant Nutr Soil Sci Z Pflanzenernahr Bodenkd 166:579–584

    Article  CAS  Google Scholar 

  • Qin H, He ZJ, Xiong JF, Chen L, Bi Y (2012) Effects of intercropping on the contents and accumulation of heavy metals in maize varieties and Pteris cretica L. J Agro-Environ Sci 31:1281–1288

    CAS  Google Scholar 

  • Qiu D, Du R, Meng D, Gu M, He B, Wei Y, Wang X (2017) Effect of maize (Pteris vittata L.) intercropping on remediation of As-contaminated farmland soil. J Agro-Environ Sci 36:101–107

    Google Scholar 

  • Quazi S, Datta R, Sarkar D (2011) Effects of soil types and forms of arsenical pesticide on rice growth and development. Int J Environ Sci Technol 8:445–460

    Article  CAS  Google Scholar 

  • Ren YY, Wang XL, Zhang SQ, Palta JA, Chen YL (2017) Influence of spatial arrangement in maize-soybean intercropping on root growth and water use efficiency. Plant Soil 415:131–144

    Article  CAS  Google Scholar 

  • Robson TC, Braungardt CB, Keith-Roach MJ, Rieuwerts JS, Worsfold PJ (2013) Impact of arsenopyrite contamination on agricultural soils and crops. J Geochem Explor 125:102–109

    Article  CAS  Google Scholar 

  • Santalla M, Rodino AP, Casquero PA, de Ron AM (2001) Interactions of bush bean intercropped with field and sweet maize. Eur J Agron 15:185–196

    Article  Google Scholar 

  • Santos JAG, Gonzaga MIS, Ma LQ, Srivastava M (2008) Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L. of different ages. Environ Pollut 154:306–311

    Article  CAS  Google Scholar 

  • Srivastava M, Santos J, Srivastava P, Ma LQ (2010) Comparison of arsenic accumulation in 18 fern species and four Pteris vittata accessions. Bioresour Technol 101:2691–2699

    Article  CAS  Google Scholar 

  • Tang Y, He J, Yu X, Xie Y, Lin L, Sun G, Li H, Liao M, Liang D, Xia H, Wang X, Zhang J, Liu Z, Tu L, Liu L (2017) Intercropping with Solanum nigrum and Solanum photeinocarpum from two ecoclimatic regions promotes growth and reduces cadmium uptake of eggplant seedlings. Pedosphere 27:638–644

    Article  Google Scholar 

  • Tyrovola K, Nikolaidis NP (2009) Arsenic mobility and stabilization in topsoils. Water Res 43:1589–1596

    Article  CAS  Google Scholar 

  • Unlu H, Unlu HO, Dasgan HY, Solmaz I, Sari N, Kartal E, Uzen N (2008) Effects of intercropping on plant nutrient uptake in various vegetables species. Asian J Chem 20:4781–4791

    CAS  Google Scholar 

  • Verma KS, Kohli S, Kaushal R, Chaturvedi OP (2014) Root structure, distribution and biomass in five multipurpose tree species of Western Himalayas. J Mt Sci 11:519–525

    Article  Google Scholar 

  • Wahla IH, Ahmad R, Ehsanullah, Ahmad A, Jabbar A (2009) Competitive functions of components crops in some barley based intercropping systems. Int J Agric Biol 11:69–72

    Google Scholar 

  • Wan X-M, Lei M, Liu Y-R, Huang Z-C, Chen T-B, Gao D (2013) A comparison of arsenic accumulation and tolerance among four populations of Pteris vittata from habitats with a gradient of arsenic concentration. Sci Total Environ 442:143–151

    Article  CAS  Google Scholar 

  • Wan XM, Lei M, Chen TB, Tan YB, Yang JX (2017a) Safe utilization of heavy-metal-contaminated farmland by mulberry tree cultivation and silk production. Sci Total Environ 599:1867–1873

    Article  Google Scholar 

  • Wan XM, Lei M, Chen TB, Yang JX (2017b) Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil. Sci Total Environ 579:1467–1475

    Article  CAS  Google Scholar 

  • Wang HB, Wong MH, Lan CY, Baker AJM, Qin YR, Shu WS, Chen GZ, Ye ZH (2007) Uptake and accumulation of arsenic by 11 Pteris taxa from southern China. Environ Pollut 145:225–233

    Article  CAS  Google Scholar 

  • Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436:309–323

    Article  CAS  Google Scholar 

  • Willey RW, Osiru DSO (1972) Studies on mixtures of maize and beans (Phaseolus-vulgaris) with particular reference to plant population. J Agric Sci 79:517-&

    Article  Google Scholar 

  • Yoon Y, Lee WM, An YJ (2015) Phytotoxicity of arsenic compounds on crop plant seedlings. Environ Sci Pollut Res 22:11047–11056

    Article  CAS  Google Scholar 

  • Zhang Y, Ni J, Yang J, Zhang T, Xie D (2017) Citrus stand ages regulate the fraction alteration of soil organic carbon under a citrus/Stropharua rugodo-annulata intercropping system in the Three Gorges Reservoir area, China. Environ Sci Pollut Res 24:18363–18371

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was provided by the National Key Research and Development Program of China (Grant No. 2017YFD0800900), the National Natural Science Foundation of China (Grant No. 41301547), and grants from the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Lei.

Additional information

Responsible editor: Elena Maestri

Electronic supplementary material

Fig. S1

(DOCX 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, X., Lei, M. Intercropping efficiency of four arsenic hyperaccumulator Pteris vittata populations as intercrops with Morus alba. Environ Sci Pollut Res 25, 12600–12611 (2018). https://doi.org/10.1007/s11356-018-1366-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1366-y

Keywords

Navigation