Skip to main content
Log in

First investigation of trace metal distribution in surface seawater and copepods of the south coast of Sfax (Tunisia)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The increased metal loading from anthropogenic sources has affected aquatic ecosystems and has cascaded through food webs worldwide. Therefore, the evaluation of ecological impacts of anthropogenic metal has become increasingly important. In this paper, we monitored the concentration of six trace metals (Cd, Cu, Fe, Ni, Pb, and Zn) in the three copepod groups (cyclopoida, calanoida, and harpacticoida) and in seawater samples collected from the south coast of Sfax (Tunisia). Results showed that the concentration of Fe and Zn for all copepod groups was higher than that for other metals and that of Cd was the lowest in all groups. The mean increase in bioconcentration factor of metals in copepods ranged from 0.05 to 18.93 and followed the sequence Zn (18.93) > Fe (14.34) > Pb (6.41) > Cd (1.53) > Cu (0.10) > Ni (0.05). The copepods in the south coast of Sfax were found to have a great capacity to accumulate trace metals and act as contamination indicators. Comparative studies with those from the Luza zone indicate considerable bioaccumulation of trace metals (Pb and Ni) in all copepod groups namely in cyclopoida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amiard J-C, Amiard-Triquet C, Charbonnier L et al (2008) Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia. Food Chem Toxicol 46:2010–2022. doi:10.1016/j.fct.2008.01.041

    Article  CAS  Google Scholar 

  • Azri C, Abida H, Medhioub K (2010) Geochemical behaviour of the aerosol sampled in a suburban zone of Sfax City (Tunisia). Int J Environ Pollut 41:51–69. doi:10.1504/IJEP.2010.032245

    Article  CAS  Google Scholar 

  • Barka S, Pavillon JF, Amiard JC (2001) Influence of different essential and non-essential metals on MTLP levels in the copepod Tigriopus brevicornis. Comp Biochem Physiol Part C 128:479–493

    Article  CAS  Google Scholar 

  • Battuello M, Brizio P, Mussat Sartor R et al (2016) Zooplankton from a north western Mediterranean area as a model of metal transfer in a marine environment. Ecol Indic 66:440–451. doi:10.1016/j.ecolind.2016.02.018

    Article  CAS  Google Scholar 

  • Beaugrand G, Reid PC, Ibanez F et al (2002) Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692–1694. doi:10.1126/science.1071329

    Article  CAS  Google Scholar 

  • Ben Ltaief T, Drira Z, Hannachi I et al (2015) What are the factors leading to the success of small planktonic copepods in the Gulf of Gabes, Tunisia? J Mar Biol Assoc U K 95:747–761. doi:10.1017/S0025315414001507

    Article  Google Scholar 

  • Ben Salem Z, Ayadi H (2016a) Assessment of heavy metal contamination levels and toxicity in sediments and fishes from the Mediterranean Sea (southern coast of Sfax, Tunisia). Environ Sci Pollut Res 23:13954–13963. doi:10.1007/s11356-016-6534-3

    Article  Google Scholar 

  • Ben Salem Z, Ayadi H (2016b) Heavy metal accumulation in Diplodus annularis, Liza aurata, and Solea vulgaris relevant to their concentration in water and sediment from the southwestern Mediterranean (coast of Sfax). Environ Sci Pollut Res 23:13895–13906. doi:10.1007/s11356-016-6531-6

    Article  CAS  Google Scholar 

  • Ben Salem Z, Drira Z, Ayadi H (2015) What factors drive the variations of phytoplankton, ciliate and mesozooplankton communities in the polluted southern coast of Sfax, Tunisia? Environ Sci Pollut Res. doi:10.1007/s11356-015-4416-8

  • Bervoets L, Blust R (2003) Metal concentrations in water, sediment and gudgeon (Gobio gobio) from a pollution gradient: relationship with fish condition factor. Environ Pollut 126:9–19. doi:10.1016/S0269-7491(03)00173-8

    Article  CAS  Google Scholar 

  • Bhattacharya BD, Hwang J-S, Tseng L-C et al (2014) Bioaccumulation of trace elements in dominant mesozooplankton group inhabiting in the coastal regions of Indian Sundarban mangrove wetland. Mar Pollut Bull 87:345–351. doi:10.1016/j.marpolbul.2014.07.050

    Article  CAS  Google Scholar 

  • Cordero J, Guevara M, Morales E, Lodeiros C (2005) Effect of heavy metals on the growth of the tropical microalga Tetrasermis chuii (Prasinophyceae). Rev Biol Trop 53:15–32

    Google Scholar 

  • Delia-Vinas M, Gaudy R (1996) Annual cycle of Euterpina acutifrons (Copepoda: Harpacticoida) in the Gulf of San Matias (Argentina) and in the Gulf of Marseilles (France). Sci Mar 60:307–318

    Google Scholar 

  • Drira Z, Kmiha-Megdiche S, Sahnoun H et al (2016) Assessment of anthropogenic inputs in the surface waters of the southern coastal area of Sfax during spring (Tunisia, Southern Mediterranean Sea). Mar Pollut Bull 104:355–363. doi:10.1016/j.marpolbul.2016.01.035

    Article  CAS  Google Scholar 

  • Fang T-H, Hwang J-S, Hsiao S-H, Chen H-Y (2006) Trace metals in seawater and copepods in the ocean outfall area off the northern Taiwan coast. Mar Environ Res 61:224–243. doi:10.1016/j.marenvres.2005.10.002

    Article  CAS  Google Scholar 

  • Fang T-H, Hsiao S-H, Nan F-H (2014) Nineteen trace elements in marine copepods collected from the coastal waters off northeastern Taiwan. Cont Shelf Res 91:70–81. doi:10.1016/j.csr.2014.09.003

    Article  Google Scholar 

  • Fernandes C, Fontaínhas-Fernandes A, Cabral D, Salgado MA (2007) Heavy metals in water, sediment and tissues of Liza saliens from Esmoriz–Paramos Lagoon, Portugal. Environ Monit Assess 136:267–275. doi:10.1007/s10661-007-9682-6

    Article  Google Scholar 

  • Fernández Severini MD, Botté SE, Hoffmeyer MS, Marcovecchio JE (2009) Spatial and temporal distribution of cadmium and copper in water and zooplankton in the Bahía Blanca estuary, Argentina. Estuar Coast Shelf Sci 85:57–66. doi:10.1016/j.ecss.2009.03.019

    Article  Google Scholar 

  • Fisher N, Nolan C, Fowler S (1991) Assimilation of metals in marine copepods and its biogeochemical implications. Mar Ecol Prog Ser 71:37–43. doi:10.3354/meps071037

    Article  CAS  Google Scholar 

  • Gallienne CP, Robins DB (2001) Is Oithona the most important copepod in the world’s oceans? J Plankton Res 23:1421–1432

    Article  Google Scholar 

  • Govindasamy C, Azariah J (1999) Seasonal variation of heavy metals in coastal water of the Coromandel coast, Bay of Bengal, India. Indian J Geo-Mar Sci 28:249–256

    CAS  Google Scholar 

  • Hamza-Chaffai A, Pellerin J, Amiard JC (2003) Health assessment of a marine bivalve Ruditapes decussatus from the Gulf of Gabès (Tunisia). Environ Int 28:609–617

    Article  CAS  Google Scholar 

  • Ho T-Y, Quigg A, Finkel ZV et al (2003) The elemental composition of some marine phytoplankton. J Phycol 39:1145–1159

    Article  CAS  Google Scholar 

  • Hsiao S-H, Fang T-H, Hwang J-S (2006) The bioconcentration of trace metals in dominant copepod species off the northern Taiwan coast. Crustaceana 79:459–474

    Article  Google Scholar 

  • Hsiao S-H, Hwang J-S, Fang T-H (2011) Copepod species and their trace metal contents in coastal northern Taiwan. J Mar Syst 88:232–238. doi:10.1016/j.jmarsys.2011.04.009

    Article  Google Scholar 

  • Irigoien X, Head RN, Harris RP et al (2000) Feeding selectivity and egg production of Calanus helgolandicus in the English Channel. Limnol Oceanogr 45:44–54

    Article  Google Scholar 

  • Ismael AA, Dorgham MM (2003) Ecological indices as a tool for assessing pollution in El-Dekhaila Harbour (Alexandria, Egypt). Oceanologia 45:121–131

    Google Scholar 

  • Kahle J, Zauke G-P (2003) Trace metals in Antarctic copepods from the Weddell Sea (Antarctica). Chemosphere 51:409–417. doi:10.1016/S0045-6535(02)00855-X

    Article  CAS  Google Scholar 

  • Kršinić F, Bojanić D, Precali R, Kraus R (2007) Quantitative variability of the copepod assemblages in the northern Adriatic Sea from 1993 to 1997. Estuar Coast Shelf Sci 74:528–538. doi:10.1016/j.ecss.2007.05.036

    Article  Google Scholar 

  • Marcus Zamora L, King CK, Payne SJ, Virtue P (2015) Sensitivity and response time of three common Antarctic marine copepods to metal exposure. Chemosphere 120:267–272. doi:10.1016/j.chemosphere.2014.07.051

    Article  CAS  Google Scholar 

  • Mazumder D, Saintilan N, Williams R (2006) Trophic relationships between itinerant fish and crab larvae in a temperate Australian saltmarsh. Mar Freshw Res 57:193–199

    Article  Google Scholar 

  • Messaoudi I, Barhoumi S, Saïd K, Kerken A (2009) Study on the sensitivity to cadmium of marine fish Salaria basilisca (Pisces: Blennidae). J Environ Sci 21:1620–1624. doi:10.1016/S1001-0742(08)62464-X

    Article  CAS  Google Scholar 

  • Nakamura Y, Turner JT (1997) Predation and respiration by the small cyclopoid copepod Oithona similis: how important is feeding on ciliates and heterotrophic flagellates? J Plankton Res 19:1275–1288

    Article  Google Scholar 

  • Neff JM (2002) Bioaccumulation in marine organisms: effect of contaminants from oil well produced water. Elsevier, Amsterdam

    Google Scholar 

  • Paffenhofer G (1993) On the ecology of marine cyclopoid copepods (Crustacea, Copepoda). J Plankton Res. doi:10.1093/plankt/15.1.37

  • Paimpillil JS, Thresiamma J, Rejomon G, Gerson VG (2010) Metals in coastal zooplanktons—a coastal living resource hazard. Rooekeer, pp 199–207

  • Peers G, Quesnel S-A, Price NM (2005) Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. Limnol Oceanogr 50:1149–1158

    Article  CAS  Google Scholar 

  • Pempkowiak J, Chiffoleau J-F, Staniszewski A (2000) The vertical and horizontal distribution of selected trace metals in the Baltic Sea off Poland. Estuar Coast Shelf Sci 51:115–125. doi:10.1006/ecss.2000.0641

    Article  CAS  Google Scholar 

  • Pohl C, Hennings U, Petersohn I, Siegel H (1998) Trace metal budget, transport, modification and sink in the transition area between the Oder and Peene Rivers and the southern Pomeranian Bight. Mar Pollut Bull 36:598–616

    Article  CAS  Google Scholar 

  • Price NM, Morel FMM (1991) Co-limitation of phytoplankton growth by nickel and nitrogen. Limnol Oceanogr 36:1071–1077

    Article  CAS  Google Scholar 

  • Rainbow PS (1993) Ecotoxicology of metals in invertebrates. In: Dallinger R, Rainbow PS (eds) The significance of trace metals concentrations in marine invertebrates. Lewis Publisher, Boca Raton, pp 3–23

    Google Scholar 

  • Rainbow PS (1997) Ecophysiology of trace metal uptake in crustaceans. Estuar Coast Shelf Sci 44:169–175

    Article  CAS  Google Scholar 

  • Reinfelder JR, Fisher NS, Luoma SN et al (1998) Trace element trophic transfer in aquatic organisms: a critique of the kinetic model approach. Sci Total Environ 219:117–135

    Article  CAS  Google Scholar 

  • Rejomon G, Balachandran KK, Nair M, Joseph T (2008) Trace metal concentrations in marine zooplankton from the western Bay of Bengal. Appl Ecol Environ Res 6:107–116

    Article  Google Scholar 

  • Rekik A, Drira Z, Guermazi W et al (2012) Impacts of an uncontrolled phosphogypsum dumpsite on summer distribution of phytoplankton, copepods and ciliates in relation to abiotic variables along the near-shore of the southwestern Mediterranean coast. Mar Pollut Bull 64:336–346. doi:10.1016/j.marpolbul.2011.11.005

    Article  CAS  Google Scholar 

  • Rentería-Cano ME, Sánchez-Velasco L, Shumilin E et al (2011) Major and trace elements in zooplankton from the northern Gulf of California during summer. Biol Trace Elem Res 142:848–864. doi:10.1007/s12011-010-8820-0

    Article  Google Scholar 

  • Ritterhoff J, Zauke GP (1997) Trace metals in field samples of zooplankton from the Fram Strait and the Greenland Sea. Sci Total Environ 199:255–270

    Article  CAS  Google Scholar 

  • Rogival D, Scheirs J, Blust R (2007) Transfer and accumulation of metals in a soil–diet–wood mouse food chain along a metal pollution gradient. Environ Pollut 145:516–528. doi:10.1016/j.envpol.2006.04.019

    Article  CAS  Google Scholar 

  • Schminke HK (2006) Entomology for the copepodologist. J Plankton Res 29:149–162

    Article  Google Scholar 

  • Srichandan S, Panigrahy RC, Baliarsingh SK et al (2016) Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India. Mar Pollut Bull 111:468–475. doi:10.1016/j.marpolbul.2016.06.099

    Article  CAS  Google Scholar 

  • Stibor H, Vadstein O, Diehl S et al (2004) Copepods act as a switch between alternative trophic cascades in marine pelagic food webs: trophic cascades in marine plankton. Ecol Lett 7:321–328. doi:10.1111/j.1461-0248.2004.00580.x

    Article  Google Scholar 

  • Storelli MM, Marcotrigiano GO (2005) Bioindicator organisms: heavy metal pollution evaluation in the Ionian Sea (Mediterranean Sea—Italy). Environ Monit Assess 102:159–166

    Article  CAS  Google Scholar 

  • Sun XH, Sun S, Li CL, Zhang GT (2008) Seasonal and spatial variation in abundance and egg production of Paracalanus parvus (Copepoda: Calanoida) in/out Jiaozhou Bay, China. Estuar Coast Shelf Sci 79:637–643. doi:10.1016/j.ecss.2008.06.004

    Article  Google Scholar 

  • Sunda WG (2012) Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front Microbiol 3:1–22

    Article  Google Scholar 

  • Tayibi H, Choura M, López FA et al (2009) Environmental impact and management of phosphogypsum. J Environ Manag 90:2377–2386. doi:10.1016/j.jenvman.2009.03.007

    Article  CAS  Google Scholar 

  • Tayibi H, Gascó C, Navarro N et al (2011) Radiochemical characterization of phosphogypsum for engineering use. J Environ Prot 02:168–174. doi:10.4236/jep.2011.22019

    Article  CAS  Google Scholar 

  • Thomson AJ (1982) Proteins containing nickel. Nature 298:602–603

    Article  CAS  Google Scholar 

  • Timmermans KR, Gledhill M, Nolting RF et al (1998) Responses of marine phytoplankton in iron enrichment experiments in the northern North Sea and northeast Atlantic Ocean. Mar Chem 61:229–242

    Article  CAS  Google Scholar 

  • Tosti E, Gallo A (2012) Best biomarker and bioindicator for marine environmental pollution. J Mar Sci Res Dev 02:100–101. doi:10.4172/2155-9910.1000e101

    Article  Google Scholar 

  • Turner JT (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool Stud 43:255–266

    Google Scholar 

  • USEPA (1999) National recommended water quality criteria—correction: EPA 822/Z-99-001

  • Waeles M, Riso RD, Le Corre P (2005) Seasonal variations of cadmium speciation in the Penzé estuary, NW France. Estuar Coast Shelf Sci 65:143–152

    Article  Google Scholar 

  • Wang WX, Fisher NS (1998) Accumulation of trace elements in a marine copepod. Limnol Oceanogr 43:273–283

  • Xu Y, Wang W-X, Hsieh DP (2001) Influences of metal concentration in phytoplankton and seawater on metal assimilation and elimination in marine copepods. Environ Toxicol Chem 20:1067–1077

    Article  CAS  Google Scholar 

  • Zaghden H, Kallel M, Elleuch B, Oudot J, Saliot A, Sayadi S (2014) Evaluation of hydrocarbon pollution in marine sediments of Sfax coastal areas from the Gabes Gulf of Tunisia, Mediterranean Sea. Environ Earth Sci 72:1073–1082

    Article  CAS  Google Scholar 

  • Zauke G-P, Krause M, Weber A (1996) Trace metals in mesozooplankton of the North Sea: concentrations in different taxa and preliminary results on bioaccumulation in copepod collectives (Calanus finmarchicus/C. helgolandicus). Int Rev Gesamten Hydrobiologie 81:141–160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research unit Biodiversity and Aquatic Ecosystems UR/11ES72, Faculty of Sciences of Sfax (Tunisia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohra Ben Salem.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Salem, Z., Ayadi, H. First investigation of trace metal distribution in surface seawater and copepods of the south coast of Sfax (Tunisia). Environ Sci Pollut Res 24, 19662–19670 (2017). https://doi.org/10.1007/s11356-017-9536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9536-x

Keywords

Navigation