Skip to main content
Log in

Controlled growth of flower-like SnS2 hierarchical structures with superior performance for lithium-ion battery applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Controlled growth of flower-like SnS2 hierarchical structures was obtained by a facile hydrothermal method with the mixture solution of SnCl4 and L-cysteine (L-cys). The results of electron microscopy and X-ray diffraction characterization indicated that morphology, structure, and crystallinity of the hierarchical structures were seriously dependent on the concentration of L-cys, mole ratio of Sn4+ to L-cys and temperature. Electrochemical tests demonstrated that the flower-like SnS2 hierarchical structures exhibited superior cycling performance for anode materials of Li-ion batteries, which retained a high reversible capacity of 418 mAhg−1 and stable cyclic retention at 100th cycle. These results show that the flower-like SnS2 hierarchical structures were suitable for using as anode material in lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li B, Wang Y (2009) Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures. J Phys Chem C 114(2):890–896

    Article  Google Scholar 

  2. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57(4):724–803

    Article  CAS  Google Scholar 

  3. Hu C, Guo J, Wen J (2013) Hierarchical nanostructure CuO with peach kernel-like morphology as anode material for lithium-ion batteries. Ionics 19(2):253–258

    Article  CAS  Google Scholar 

  4. Zhu J, Yin Z, Yang D, Sun T, Yu H, Hoster HE, Hng HH, Zhang H, Yan Q (2013) Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy Environ Sci 6(3):987

    Article  CAS  Google Scholar 

  5. Wang J, Du G, Zeng R, Niu B, Chen Z, Guo Z, Dou S (2010) Porous Co3O4 nanoplatelets by self-supported formation as electrode material for lithium-ion batteries. Electrochim Acta 55(16):4805–4811

    Article  CAS  Google Scholar 

  6. Park MH, Kim K, Kim J, Cho J (2010) Flexible dimensional control of high-capacity Li-ion-battery anodes: from 0D hollow to 3D porous germanium nanoparticle assemblies. Adv Mater 22(3):415–418

    Article  CAS  Google Scholar 

  7. Esmanski A, Ozin GA (2009) Silicon inverse-opal-based macroporous materials as negative electrodes for lithium ion batteries. Adv Funct Mater 19(12):1999–2010

    Article  CAS  Google Scholar 

  8. Zhang YX, Huang M, Li F, Wen ZQ (2013) Controlled synthesis of hierarchical CuO nanostructures for electrochemical capacitor electrodes. Int J Electrochem Sci 8:8645–8661

    CAS  Google Scholar 

  9. Yan X, Tong X, Wang J, Gong C, Zhang M, Liang L (2013) Rational synthesis of hierarchically porous NiO hollow spheres and their supercapacitor application. Mater Lett 95:1–4

    Article  CAS  Google Scholar 

  10. Peng S, Li L, Tan H, Cai R, Shi W, Li C, Mhaisalkar SG, Srinivasan M, Ramakrishna S, Yan Q (2013) MS2 (M = Co and Ni) hollow spheres with tunable interiors for high–performance supercapacitors and photovoltaics. Adv Funct Mater

  11. Li L, Seng KH, Chen Z, Guo Z, Liu HK (2013) Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries. Nanoscale 5(5):1922–1928

    Article  CAS  Google Scholar 

  12. Pileni M (2007) Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains. J Phys Chem C 111(26):9019–9038

    Article  CAS  Google Scholar 

  13. Ma J, Lei D, Mei L, Duan X, Li Q, Wang T, Zheng W (2012) Plate-like SnS2 nanostructures: hydrothermal preparation, growth mechanism and excellent electrochemical properties. CrystEngComm 14(3):832

    Article  CAS  Google Scholar 

  14. Ma J, Lei D, Duan X, Li Q, Wang T, Cao A, Mao Y, Zheng W (2012) Designable fabrication of flower-like SnS2 aggregates with excellent performance in lithium-ion batteries. RSC Adv 2(9):3615

    Article  CAS  Google Scholar 

  15. Wu Q, Jiao L, Du J, Yang J, Guo L, Liu Y, Wang Y, Yuan H (2013) One-pot synthesis of three-dimensional SnS2 hierarchitectures as anode material for lithium-ion batteries. J Power Sources 239:89–93

    Article  CAS  Google Scholar 

  16. Zou Y, Wang Y (2013) Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries. Chem Eng J 229:183–189

    Article  CAS  Google Scholar 

  17. Liu H, Su Y, Chen P, Wang Y (2013) Microwave-assisted solvothermal synthesis of 3D carnation-like SnS2 nanostructures with high visible light photocatalytic activity. J Mol Catal A Chem 378:285–292

    Article  CAS  Google Scholar 

  18. Liu S, Yin X, Chen L, Li Q, Wang T (2010) Synthesis of self-assembled 3D flowerlike SnS2 nanostructures with enhanced lithium ion storage property. Solid State Sci 12(5):712–718

    Article  CAS  Google Scholar 

  19. Lei Y, Song S, Fan W, Xing Y, Zhang H (2009) Facile synthesis and assemblies of flowerlike SnS2 and In3+-doped SnS2: hierarchical structures and their enhanced photocatalytic property. J Phys Chem C 113(4):1280–1285

    Article  CAS  Google Scholar 

  20. Zai J, Qian X, Wang K, Yu C, Tao L, Xiao Y, Chen J (2012) 3D-hierarchical SnS2 micro/nano-structures: controlled synthesis, formation mechanism and lithium ion storage performances. CrystEngComm 14(4):1364

    Article  CAS  Google Scholar 

  21. Nakanishi T, Ariga K, Michinobu T, Yoshida K, Takahashi H, Teranishi T, Mohwald H, Kurth DG (2007) Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains. Small 3(12):2019–2023

    Article  CAS  Google Scholar 

  22. Zhao P, Huang K (2007) Preparation and characterization of netted sphere-like CdS nanostructures 1. Cryst Growth Des 8(2):717–722

    Article  Google Scholar 

  23. Zhang H, Yang D, Ma X, Que D (2005) A versatile solution route for oxide/sulfide core–shell nanostructures and nonlayered sulfide nanotubes. Nanotechnology 16(11):2721–2725

    Article  CAS  Google Scholar 

  24. Zhu Y, Fan D, Shen W (2008) A general chemical conversion route to synthesize various ZnO-based core/shell structures. J Phys Chem C 112(28):10402–10406

    Article  CAS  Google Scholar 

  25. Kim T-J, Kim C, Son D, Choi M, Park B (2007) Novel SnS2-nanosheet anodes for lithium-ion batteries. J Power Sources 167(2):529–535

    Article  CAS  Google Scholar 

  26. Brousse T, Lee S, Pasquereau L, Defives D, Schleich D (1998) Composite negative electrodes for lithium ion cells. Solid State Ionics 113:51–56

    Article  Google Scholar 

  27. Ogihara N, Igarashi Y, Kamakura A, Naoi K, Kusachi Y, Utsugi K (2006) Disordered carbon negative electrode for electrochemical capacitors and high-rate batteries. Electrochim Acta 52(4):1713–1720

    Article  CAS  Google Scholar 

  28. Wang L, Zhuo L, Yu Y, Zhao F (2013) High-rate performance of SnS2 nanoplates without carbon-coating as anode material for lithium ion batteries. Electrochim Acta 112:439–447

    Article  CAS  Google Scholar 

  29. Patra CR, Odani A, Pol VG, Aurbach D, Gedanken A (2006) Microwave-assisted synthesis of tin sulfide nanoflakes and their electrochemical performance as Li-inserting materials. J Solid State Electrochem 11(2):186–194

    Article  Google Scholar 

  30. Zai J, Wang K, Su Y, Qian X, Chen J (2011) High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. J Power Sources 196(7):3650–3654

    Article  CAS  Google Scholar 

  31. Yin J, Cao H, Zhou Z, Zhang J, Qu M (2012) SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. J Mater Chem 22(45):23963

    Article  CAS  Google Scholar 

  32. Xu C, Zeng Y, Rui X, Xiao N, Zhu J, Zhang W, Chen J, Liu W, Tan H, Hng HH (2012) Controlled soft-template synthesis of ultrathin C@ FeS nanosheets with high-Li-storage performance. ACS Nano 6(6):4713–4721

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the financial support provided by Anhui Provincial Natural Science Foundation (11040606 M52) and the National Natural Science Foundation of China (51372063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youwen Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Yang, Y., Ma, D. et al. Controlled growth of flower-like SnS2 hierarchical structures with superior performance for lithium-ion battery applications. Ionics 21, 19–26 (2015). https://doi.org/10.1007/s11581-014-1163-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1163-7

Keywords

Navigation