Skip to main content

Advertisement

Log in

Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Low-level methane emissions from coal mine ventilation air (CMV-CH4; i.e., 1 % CH4) can significantly contribute to global climate change, and therefore, treatment is important to reduce impacts. To investigate CMV-CH4 abatement potential, five different mixed methanotrohic consortia (MMCs) were established from soil/sediment sources, i.e., landfill top cover soil, bio-solid compost, vegetated humus soil, estuarine and marine sediments. Enrichment conditions for MMCs were as follows: nitrate mineral salt (NMS) medium, pH ~ 6.8; 25 °C; 20–25 % CH4; agitation 200 rpm; and culture period 20 days, in mini-bench-top bioreactors. The enriched cultures were supplemented with extra carbon (methanol 0.5–1.5 %, formate 5–15 mM, and acetate 5–15 mM), nitrogen (nitrate 0.5–1.5 g L−1, ammonium 0.1–0.5 g L−1, or urea: 0.1–0.5 g L−1), and trace elements (copper 1–5 μM, iron 1–5 μM, and zinc 1–5 μM) in different batch experiments to improve low-level CH4 abatement. Average CH4 oxidation capacities (MOCs) of MMCs varied between 1.712 ± 0.032 and 1.963 ± 0.057 mg g−1DWbiomass h−1. Addition of formate improved the MOCs of MMCs, but the dose-response varied for different MMCs. Acetate, nitrate and copper had no significant effect on MOCs, while addition of methanol, ammonium, urea, iron and zinc impacted negatively. Overall, MMCs enriched from marine sediments and landfill top cover soil showed high MOCs which were largely resilient to nutrient supplementation, suggesting a strong potential for biofilter development for industrial low-level CH4 abatement, such as those present in CMV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Figure 4

Similar content being viewed by others

References

  • Andreasen RR, Poulsen TG, Iversen N, Roslev P (2013) Stabilization and stimulation of atmospheric methane oxidation in soil and soil biofilters by Al2O3 amendment. Soil Biol Biochem 64:127–135

    Article  CAS  Google Scholar 

  • Antony CP, Doronina NV, Boden R, Trotsenko YA, Shouche YS, Murrell JC (2012) Methylophaga lonarensis sp. nov., a moderately haloalkaliphilic methylotroph isolated from the soda lake sediments of a meteorite impact crater. Int J Syst Evol Microbiol 62:1613–1618

    Article  CAS  Google Scholar 

  • Apel WA, Dugan PR, Wiebe MR (1991) Use of methanotrophic bacteria in gas-phase bioreactors to abate methane in coal-mine atmospheres. Fuel 70:1001–1003

    Article  CAS  Google Scholar 

  • APHA APHA (2005) Standard methods for the examination of water and wastewater. APHA, Washington

    Google Scholar 

  • Aronson EL, Helliker BR (2010) Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis. Ecology 91:3242–3251

    Article  CAS  Google Scholar 

  • Arif MAS, Houwen F, Verstraete W (1996) Agricultural factors affecting methane oxidation in arable soil. Biol Fertil Soils 21:95–102

  • Aziz N, Black D, Ren T (2011) Keynote paper: mine gas drainage and outburst control in Australian underground coal mines. Proc Eng 26:84–92

    Article  Google Scholar 

  • Benstead J, King GM, Williams HG (1998) Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils. Appl Environ Microbiol 64:1091–1098

    CAS  Google Scholar 

  • Boiesen A, Arvin E, Broholm K (1993) Effect of mineral nutrients on the kinetics of methane utilization by methanotrophs. Biodegradation 4:163–170

    Article  CAS  Google Scholar 

  • Borjesson G, Sundh I, Svensson B (2004) Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol Ecol 48:305–312

    Article  CAS  Google Scholar 

  • Bowman JP, Skerratt JH, Nichols PD, LI S (1991) Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS Microbiol Lett 85:15–21

    Article  CAS  Google Scholar 

  • Bussmann I, Pester M, Brune A, Schink B (2004) Preferential cultivation of type II methanotrophic bacteria from littoral sediments (Lake Constance). FEMS Microbiol Ecol 47:179–189

    Article  CAS  Google Scholar 

  • Cai ZCC, Mosier AR (2000) Effect of NH4Cl addition on methane oxidation by paddy soils. Soil Biol Biochem 32:1537–1545

    Article  CAS  Google Scholar 

  • Cai ZC, Yan XY (1999) Kinetic model for methane oxidation by paddy soil as affected by temperature, moisture and N addition. Soil Biol Biochem 31:715–725

    Article  CAS  Google Scholar 

  • Chidambarampadmavathy K, Karthikeyan OP, Heimann K (2015) Biopolymers made from methane in bioreactors. Eng Life Sci 15:689–699

    Article  CAS  Google Scholar 

  • Chistoserdova L, Vorholt JA, Lidstrom ME (2005): A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biology 6

  • Chowdhury TR, Dick RP (2013) Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl Soil Ecol 65:8–22

    Article  Google Scholar 

  • Dijk J, Huizing HJ, de Vries C, Boone LJ (2012) An investigation into novel concepts to remove GHG methane from dairy stable ventilation air at ultra-low concentrations by the use of methanotrophic bacteria. InnovationNetwork, Reinventing Agribusiness and Rural Areas, Netherlands

    Google Scholar 

  • Dong J (2013) The role of copper in the growth of Methylosinus trichosporium IMV 3011 and poly-β-hydroxybutyrate biosynthesis. Appl Mech Mater 268–270:221–224

    Article  Google Scholar 

  • du Plessis CA, Strauss JM, Sebapalo EMT, Riedel KHJ (2003) Empirical model for methane oxidation using a composted pine bark biofilter. Fuel 82:1359–1365

    Article  Google Scholar 

  • Dubey SK, Singh JS (2000) Spatio-temporal variation and effect of urea fertilization on methanotrophs in a tropical dryland rice field. Soil Biol Biochem 32:521–526

    Article  CAS  Google Scholar 

  • Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239

    Article  CAS  Google Scholar 

  • Einola JKM, Kettunen RH, Rintala JA (2007) Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soil Biol Biochem 39:1156–1164

    Article  CAS  Google Scholar 

  • Figueroa RA (1993): Methane oxidation in landfill top soils. In: Christensen TH CR, Stegmann R (Hrsg.), Sardinia Fourth International Landfill Symposium. CISA, St. Margherita di Pula, Cagliari, Italy, pp. 701–713

  • Girard M, Ramirez AA, Buelna G, Heitz M (2011) Biofiltration of methane at low concentrations representative of the piggery industry—influence of the methane and nitrogen concentrations. Chem Eng J 168:151–158

    Article  CAS  Google Scholar 

  • Glass JB, Orphan VJ (2012): Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Frontiers in Microbiology 3

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  Google Scholar 

  • Hirayama H, Suzuki Y, Abe M, Miyazaki M, Makita H, Inagaki F, Uematsu K, Takai K (2011) Methylothermus subterraneus sp nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int J Syst Evol Microbiol 61:2646–2653

    Article  CAS  Google Scholar 

  • Jensen S, Prieme A, Bakken L (1998) Methanol improves methane uptake in starved methanotrophic microorganisms. Appl Environ Microbiol 64:1143–1146

    CAS  Google Scholar 

  • Jiang H, Chen Y, Jiang PX, Zhang C, Smith TJ, Murrell JC, Xing XH (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49:277–288

    Article  CAS  Google Scholar 

  • Jollie DR, Lipcomb JD (1991) Evidence for distinct formate and NAD+ active sites in formate dehydrogenase from methanotrophs. J Inorg Biochem 43:578

    Article  Google Scholar 

  • Jugnia LB, Mottiar Y, Djuikom E, Cabral AR, Greer CW (2012) Effect of compost, nitrogen salts, and NPK fertilizers on methane oxidation potential at different temperatures. Appl Microbiol Biotechnol 93:2633–2643

    Article  CAS  Google Scholar 

  • Kalyuzhnaya MG, Stolyar SM, Auman AJ, Lara JC, Lidstrom ME, Chistoserdova L (2005) Methylosarcina lacus sp nov., a methanotroph from Lake Washington, Seattle, USA, and emended description of the genus Methylosarcina. Int J Syst Evol Microbiol 55:2345–2350

    Article  CAS  Google Scholar 

  • Kara EE, Ozdilek HG (2010) The effect of nitrogenous fertilizers on methane oxidation in soil. Ekoloji 19:1–9

    CAS  Google Scholar 

  • Karacan CO, Ruiz FA, Cote M, Phipps S (2011) Coal mine methane: a review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int J Coal Geol 86:121–156

    Article  CAS  Google Scholar 

  • Karakurt I, Aydin G, Aydiner K (2011) Mine ventilation air methane as a sustainable energy source. Renew Sustain Energy Rev 15:1042–1049

    Article  CAS  Google Scholar 

  • Karthikeyan OP, Chidambarampadmavathy K, Cires S, Heimann K (2015a) Review of sustainable methane mitigation and biopolymer production. Crit Rev Environ Sci Technol 45:1579–1610

    Article  CAS  Google Scholar 

  • Karthikeyan OP, Chidambarampadmavathy K, Nadarajan S, Heimann K (2015b) Effect of CH4/O2 ratio on fatty acid profile and polyhydroxybutyrate accumulation in marine a methanotrophic consortium. Chemosphere 141:235–242

    Article  CAS  Google Scholar 

  • Kim HG, Han GH, Eom CY, Kim SW (2008) Isolation and taxonomic characterization of a novel type I methanotrophic bacterium. J Microbiol 46:45–50

    Article  CAS  Google Scholar 

  • King GM, Schnell S (1994) Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations. Appl Environ Microbiol 60:3508–3513

    CAS  Google Scholar 

  • Kravchenko IK (2002) Methane oxidation in boreal peat soils treated with various nitrogen compounds. Plant Soil 242:157–162

    Article  CAS  Google Scholar 

  • Leak DJ, Dalton H (1983) In vivo studies of primary alcohols, aldehydes and carboxylic-acids as electron-donors for the methane mono-oxygenase in a variety of methanotrophs. J Gen Microbiol 129:3487–3497

    CAS  Google Scholar 

  • Lee EH, Yi T, Moon KE, Park H, Ryu HW, Cho KS (2011) Characterization of methane oxidation by a methanotroph isolated from a landfill cover soil, South Korea. J Microbiol Biotechnol 21:753–756

    Article  Google Scholar 

  • Limbri H, Gunawan C, Rosche B, Scott J (2013): Challenges to developing methane biofiltration for coal mine ventilation air: A review. Water Air and Soil Pollution 224

  • Limbri H, Gunawan C, Thomas T, Smith A, Scott J, Rosche B (2014) Coal-packed methane biofilter for mitigation of green house gas emissions from coal mine ventilation air. PLoS ONE 9:e94641

    Article  Google Scholar 

  • Lopez JC, Quijano G, Souza TSO, Estrada JM, Lebrero R, Munoz R (2013) Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges. Appl Microbiol Biotechnol 97:2277–2303

    Article  CAS  Google Scholar 

  • Lu W-J, Chi Z-F, Mou Z-S, Long Y-Y, Wang H-T, Zhu Y (2011) Can a breathing biocover system enhance methane emission reduction from landfill? J Hazard Mater 191:228–233

    Article  CAS  Google Scholar 

  • Malashenko Y, Sokolov I, Romanovskaya V (2000) Role of monooxygenase reaction during assimilation of non-growth substrates by methanotrophs. J Mol Catal B Enzym 10:305–312

    Article  CAS  Google Scholar 

  • Meybodi MA, Behnia M (2013) Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system. Energy Policy 62:10–18

    Article  CAS  Google Scholar 

  • Mochizuki Y, Koba K, Yoh M (2012) Strong inhibitory effect of nitrate on atmospheric methane oxidation in forest soils. Soil Biol Biochem 50:164–166

    Article  CAS  Google Scholar 

  • Mohanty SR, Bharati K, Deepa N, Rao VR, Adhya TK (2000) Influence of heavy metals on methane oxidation in tropical rice soils. Ecotoxicol Environ Saf 47:277–284

    Article  CAS  Google Scholar 

  • Mohanty SR, Bodelier PL, Conrad R (2007) Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol Ecol 62:24–31

    Article  CAS  Google Scholar 

  • Murrell JC, McDonald IR, Gilbert B (2000) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8:221–225

    Article  CAS  Google Scholar 

  • Mushtaq F, Mat R, Ani FN (2014) A review on microwave-assisted pyrolysis of coal and biomass for fuel production. Renew Sust Energ Rev 39:555–574

    Article  CAS  Google Scholar 

  • Nalbandian H, Dong N (2013): Coal and gas competition in global market IEA Clean Coal Centre, London, UK, pp. 78

  • Nikiema J, Brzezinski R, Heitz M (2007) Elimination of methane generated from landfills by biofiltration: a review. Rev Environ Sci Bio/Technol 6:261–284

    Article  CAS  Google Scholar 

  • Pariatamby A, Cheah WY, Shrizal R, Thamlarson N, Lim BT, Barasarathi J (2014) Enhancement of landfill methane oxidation using different types of organic wastes. Environ Earth Sci 72:1–8

    Article  Google Scholar 

  • Park SH, Shah NN, Taylor RT, Droege MW (1992) Batch cultivation of Methylosinus trichosporium OB3. 2. production of particulate methane monooxygenase. Biotechnol Bioeng 40:151–157

    Article  CAS  Google Scholar 

  • Petroleum B (2013): BP statistical review of world energy 2013, London, UK

  • Pfluger AR, Wu WM, Pieja AJ, Wan J, Rostkowski KH, Criddle CS (2011) Selection of type I and type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions. Bioresour Technol 102:9919–9926

    Article  CAS  Google Scholar 

  • Pieja AJ, Sundstrom ER, Criddle CS (2011) Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP. Appl Environ Microbiol 77:6012–6019

    Article  CAS  Google Scholar 

  • Rahman MT, Crombie A, Moussard H, Chen Y, Murrell JC (2011) Acetate repression of methane oxidation by supplemental Methylocella silvestris in a peat soil microcosm. Appl Environ Microbiol 77:4234–4236

    Article  CAS  Google Scholar 

  • Rahnama F, Vasheghani-Farahani E, Yazdian F, Shojaosadati SA (2012) PHB production by Methylocystis hirsuta from natural gas in a bubble column and a vertical loop bioreactor. Biochem Eng J 65:51–56

    Article  CAS  Google Scholar 

  • Saidi-Mehrabad A, He ZG, Tamas I, Sharp CE, Brady AL, Rochman FF, Bodrossy L, Abell GCJ, Penner T, Dong XL, Sensen CW, Dunfield PF (2013) Methanotrophic bacteria in oilsands tailings ponds of northern Alberta. ISME J 7:908–921

    Article  CAS  Google Scholar 

  • Schnell S, King GM (1995) Stability of methane oxidation capacity to variations in methane and nutrient concentrations. FEMS Microbiol Ecol 17:285–294

    Article  CAS  Google Scholar 

  • Scott B, Ranjith PG, Choi SK, Khandelwal M (2010) A review on existing open-cut coal mining methods within Australia. J Min Sci 46:280–297

    Article  Google Scholar 

  • Semrau JD (2011) Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol 2:209

    Article  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  Google Scholar 

  • Sly LI, Bryant LJ, Cox JM, Anderson JM (1993) Development of a biofilter for the removal of methane from coal-mine ventilation atmospheres. Appl Microbiol Biotechnol 39:400–404

    Article  CAS  Google Scholar 

  • Smith TJ, Murrell JC (2009) Methanotrophy/methane oxidation. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Amsterdam, pp 293–298

    Chapter  Google Scholar 

  • Smith K, Ball T, Conen F, Dobbie K, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791

    Article  Google Scholar 

  • Song H, Xin JY, Zhang YX, Kong WB, Xia CG (2011) Poly-3-hydroxybutyrate production from methanol by Methylosinus trichosporium IMV3011 in the non-sterilized fed-batch fermentation. Afr J Microbiol Res 5:5022–5029

    CAS  Google Scholar 

  • Spokas KA, Bogner JE (2011) Limits and dynamics of methane oxidation in landfill cover soils. Waste Manag 31:823–832

    Article  CAS  Google Scholar 

  • Su S, Agnew J (2006) Catalytic combustion of coal mine ventilation air methane. Fuel 85:1201–1210

    Article  CAS  Google Scholar 

  • Su S, Beath A, Guo H, Mallett C (2005) An assessment of mine methane mitigation and utilisation technologies. Prog Energy Combust Sci 31:123–170

    Article  CAS  Google Scholar 

  • Su S, Chen HW, Teakle P, Xue S (2008) Characteristics of coal mine ventilation air flows. J Environ Manag 86:44–62

    Article  CAS  Google Scholar 

  • Tan ZT, Wang SL, Ma L (2011) Current status and prospect of development and utilization of coal mine methane in China. Energy Proc 5:1874–1877

    Article  CAS  Google Scholar 

  • Tanthachoon N, Chiemchaisri C, Chiemchaisri W, Tudsri S, Kumar S (2008) Methane oxidation in compost-based landfill cover with vegetation during wet and dry conditions in the tropics. J Air Waste Manage Assoc 58:603–612

    Article  CAS  Google Scholar 

  • Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692

    Article  CAS  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–230

    Article  CAS  Google Scholar 

  • van der Ha D, Hoefman S, Boeckx P, Verstraete W, Boon N (2010) Copper enhances the activity and salt resistance of mixed methane-oxidizing communities. Appl Microbiol Biotechnol 87:2355–2363

    Article  Google Scholar 

  • Veillette M, Viens P, Ramirez AA, Brzezinski R, Heitz M (2011) Effect of ammonium concentration on microbial population and performance of a biofilter treating air polluted with methane. Chem Eng J 171:1114–1123

    Article  CAS  Google Scholar 

  • Veillette M, Girard M, Viens P, Brzezinski R, Heitz M (2012) Function and limits of biofilters for the removal of methane in exhaust gases from the pig industry. Appl Microbiol Biotechnol 94:601–611

    Article  CAS  Google Scholar 

  • Walkiewicz A, Bulak P, Brzezinska M, Wlodarczyk T, Polakowski C (2012) Kinetics of methane oxidation in selected mineral soils. Int Agrophysics 26:401–406

    Article  CAS  Google Scholar 

  • Wang FT, Ren TX, Hungerford F, Tu SH, Aziz N (2011) Advanced directional drilling technology for gas drainage and exploration in Australian coal mines. In: He X et al (eds) ISMSSE 2011. Procedia Engineering. Elsevier Science Bv, Amsterdam

    Google Scholar 

  • Wang FT, Ren T, Tu SH, Hungerford F, Aziz N (2012) Implementation of underground longhole directional drilling technology for greenhouse gas mitigation in Chinese coal mines. Int J Greenhouse Gas Control 11:290–303

    Article  Google Scholar 

  • Wei ZK, Zou HJ, Zhang L (2002) Prevention and counter measures of gas explosions at coal mine. Ind Saf Environ Prot 20:44–46

    Google Scholar 

  • West AE, Schmidt SK (1999) Acetate stimulates atmospheric CH4 oxidation by an alpine tundra soil. Soil Biol Biochem 31:1649–1655

    Article  CAS  Google Scholar 

  • Whalen SC (2000) Influence of N and non-N salts on atmospheric methane oxidation by upland boreal forest and tundra soils. Biol Fertil Soils 31:279–287

    Article  CAS  Google Scholar 

  • Whittenbury R, Phillips KC, Wilkinso JF (1970): Enrichment, isolation and some properties of methane-utilizing bacteria. Journal of General Microbiology 61, 205-&

  • Xin JY, Zhang YX, Dong J, Song H, Xia CG (2011) An experimental study on molecular weight of poly-3-hydroxybutyrate (PHB) accumulated in Methylosinus trichosporium IMV 3011. Afr J Biotechnol 10:7078–7087

    Article  CAS  Google Scholar 

  • Yu HX, Min H, Lv ZM, Liu J (2009) Influence of poisonous gases on the bio-oxidation of coalmine gas. Int J Min Reclam Environ 23:121–131

    Article  Google Scholar 

  • Yu HX, Min H, Lü ZM (2010) Studies on bio-oxidation of coal mine gas by a biofilter. J Coal SciEng (China) 16:367–374

    Article  Google Scholar 

  • Zhang YX, Xin JY, Chen LL, Song H, Xia CU (2008) Biosynthesis of poly-3-hydroxybutyrate with a high molecular weight by methanotroph from methane and methanol. J Nat Gas Chem 17:103–109

    Article  Google Scholar 

Download references

Acknowledgments

The project is supported by the Advanced Manufacturing Cooperative Research Centre (AMCRC), funded through the Australian Government’s Cooperative Research Centre Scheme, grant number 2.3.4. The funders had no role in study design, data collection and analysis or preparation of the manuscript and have provided permission to publish. This research is part of the MBD Energy Research and Development program for Biological Carbon Capture and Storage. We thank Townsville City Council and McCahills Landscaping Supplies for providing the soil samples from Stuart Landfill and Composting Facilities, respectively. KCP was supported by an AMCRC PhD fellowship at James Cook University. The authors appreciate the technical support in the operation of the Cirrus 2 and GC by SN and Mr. Shane Askew, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Heimann.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

Mixed methanotrophic consortium biomass yields of different soil/sediment types under 20 and 1 % methane enrichment (PDF 92.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, O.P., Chidambarampadmavathy, K., Nadarajan, S. et al. Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia. Environ Sci Pollut Res 23, 4346–4357 (2016). https://doi.org/10.1007/s11356-016-6174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6174-7

Keywords

Navigation