Skip to main content

Advertisement

Log in

Function and limits of biofilters for the removal of methane in exhaust gases from the pig industry

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The agricultural sector is responsible for an important part of Canadian greenhouse gas (GHG) emissions, 8 % of the 747 Mt eq. CO2 emitted each year. The pork industry, a key sector of the agrifood industry, has had a rapid growth in Canada since the middle 1980s. For this industry, slurry storage accounts for the major part of methane (CH4) emissions, a GHG 25 times higher than carbon dioxide (CO2) on a 100-year time horizon. Intending to reduce these emissions, biofiltration, a process effective to treat CH4 from landfills and coal mines, could be effective to treat CH4 from the pig industry. Biofiltration is a complex process that requires the understanding of the biological process of CH4 oxidation and a control of the engineering parameters (filter bed, temperature, etc.). Some biofiltration studies show that this technology could be used to treat CH4 at a relatively low cost and with a relatively high purification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agriculture and Agri-Food Canada (2010) Fact sheet—all about Canada's red meat industry. http://www4.agr.gc.ca. Accessed 24 Nov 2011

  • Bender M, Conrad R (1992) Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios. FEMS Microbiol Lett 101:261–269

    Article  CAS  Google Scholar 

  • Benstead J, King GM (1997) Response of methanotrophic activity in forest soil to methane availability. FEMS Microbiol Ecol 23:333–340

    Article  CAS  Google Scholar 

  • Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277

    Article  CAS  Google Scholar 

  • Bodrossy L, Holmes EM, Holmes AJ, Kovacs KL, Murrell JC (1997) Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Archiv Microbiol 168:493–503

    Article  CAS  Google Scholar 

  • Bowman JP (2006) The methanotrophs—the families Methylococcaceae and Methylocystaceae. In: Dworking M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E (eds) The Prokaryotes, 5: Proteobacteria: Alpha and Beta Subclasses edn. Springer, New York, pp 266–289

    Google Scholar 

  • Bowman JP, Sly LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753

    Article  Google Scholar 

  • Buelna G, Dube R, Turgeon N (2008) Pig manure treatment by organic bed biofiltration. Desalin 231:297–304

    Article  CAS  Google Scholar 

  • Burrows KJ, Cornish A, Scott D, Higgins IJ (1984) Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. J Gen Microbiol 130:3327–3333

    CAS  Google Scholar 

  • Burton CH (2007) The potential contribution of separation technologies to the management of livestock manure. Livest Sci 112:208–216

    Article  Google Scholar 

  • Cai ZC, Mosier AR (2000) Effect of NH4Cl addition on methane oxidation by paddy soils. Soil Biol Biochem 32:1537–1545

    Article  CAS  Google Scholar 

  • Canada E (2009) National Inventory Report 1990-2007: Greenhouse gas sources and sinks in Canada. Environment Canada, Canada

    Google Scholar 

  • Canadian Pork Council (2006) Demonstration project on a commercial farm of a technology that capture and oxidize methane from manure storage facilities. Canadian Pork Council, Canada

    Google Scholar 

  • Canadian Pork Council (2011) Statistic: description of Canadian hog farms. http://www.cpc-ccp.com/statistics-farms-f.php. Accessed 12 Oct 2011

  • Clark OG, Edeogu I, Feddes J, Coleman RN, Abolghasemi A (2004) Effects of operating temperature and supplemental nutrients in a pilot-scale agricultural biofilter. Can Biosyst Eng 46:7–16

    Google Scholar 

  • Clemens J, Ahlgrimm H (2001) Greenhouse gases from animal husbandry—mitigation options. Nutr Cycl Agroecosystems 60:287–300

    Article  Google Scholar 

  • Colby J, Stirling DI, Dalton H (1977) The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem J 165:395–402

    CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    CAS  Google Scholar 

  • Dalton H, Wilkins PC, Jiang Y (1993) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). In: Murrell JC, Kelley DP (eds) Microbial growth on C1 compounds. Intercept, Andover, pp 65–80

    Google Scholar 

  • Delhoménie M, Nikiema J, Bibeau L, Heitz M (2008) A new method to determine the microbial kinetic parameters in biological air filters. Chem Eng Sci 63:4126–4134

    Article  Google Scholar 

  • du Plessis CA, Strauss JM, Sebapalo MT, Riedel KJ (2003) Empirical model for methane oxidation using a composted pine bark biofilter. Fuel 82:1359–1365

    Article  Google Scholar 

  • Dubé R, Buelna G, Bernard Y, Bellemare G (2005) Adaptation et démonstration du procédé BIOSORMD-Lisier dans uen ferme porcine de type finisseur. Vecteur Env 38:20–25

    Google Scholar 

  • Dunfield PF, Knowles R (1995) Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol. Appl Environ Microbiol 61:3129

    CAS  Google Scholar 

  • Dunfield PF, Liesack W, Henckel T, Knowles R, Conrad R (1999) High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl Env Microbiol 65:1009–1014

    CAS  Google Scholar 

  • FAO (2010a) FAOSTAT: food balance sheets. http://faostat.fao.org/site/368/DesktopDefault.aspx?PageID=368#ancor. Accessed 25 Jun 2010

  • FAO (2010b) FAOSTAT: livestock primary. http://faostat.fao.org/site/603/default.aspx#ancor. Accessed 25 Jun 2010

  • Fleming R (2003) Evaluation of mechanical liquid/solid manure separators. CSAE/SCGR 2003 Meeting, Montréal, Québec, 6–9 juillet 2003, pp 1–10

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 129–234. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf. Accessed 14 Mar 2012

  • Girard M, Nikiema J, Brzezinski R, Buelna G, Heitz M (2009) A review of the environmental pollution originating from the piggery industry and of the available mitigation technologies: towards the simultaneous biofiltration of swine slurry and methane. Can J Civ Eng 36:1946–1957

    Article  CAS  Google Scholar 

  • Girard M, Avalos Ramirez A, Buelna G, Heitz M (2011) Biofiltration of methane at low concentrations representative of the piggery industry—influence of the methane and nitrogen concentrations. Chem Eng J 168:151–158

    Article  CAS  Google Scholar 

  • Girard M, Viens P, Avalos Ramirez A, Brzezinski R, Buelna G, Heitz M (2012) Simultaneous treatment of methane and swine slurry by biofiltration. J Chem Technol Biotechnol. doi:10.1002/jctb.3692

  • Government of Canada (2011) Canada's greenhouse gas target and emissions projections. http://www.climatechange.gc.ca/default.asp?lang=En&n=DC025A76-1. Accessed 24 Nov 2011

  • Government of Quebec (2005) Règlement sur les exploitations agricoles, Article 31. http://www.mddep.gouv.qc.ca/milieu_agri/agricole/rea201007.pdf. Accessed 24 Nov 2011

  • Gulledge J, Doyle AP, Schimel JP (1997) Different NH4-inhibition patterns of soil CH4 consumption: a result of distinct CH4-oxidizer populations across sites? Soil Biol Biochem 29:13

    Article  CAS  Google Scholar 

  • Hansen KH, Angelidaki I, Ahring BK (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32:5–12

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Mol Biol Rev 60:439–471

    CAS  Google Scholar 

  • Henry SM, Grbic-Galic D (1990) Effect of mineral media on trichloroethylene oxidation by aquifer methanotrophs. Microb Ecol 20:151–169

    Article  CAS  Google Scholar 

  • Heyer J, Galchenko VF, Dunfield PF (2002) Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. Microbiol 148:2831–2846

    CAS  Google Scholar 

  • Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826

    Article  CAS  Google Scholar 

  • Hütsch BW, Webster CP, Powlson DS (1994) Methane oxidation in soil as affected by land-use, soil-pH and N-fertilization. Soil Biol Biochem 26:1613–1622

    Article  Google Scholar 

  • Hutton WE, Zobell CE (1949) The occurrence and characteristics of methane-oxidizing bacteria in marine sediments. J Bacteriol 58:463–473

    CAS  Google Scholar 

  • Imbeah M (1998) Composting piggery waste: a review. Bioresour Technol 63:197–203

    Article  CAS  Google Scholar 

  • Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing X (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49:277–288

    Article  CAS  Google Scholar 

  • Kebreab E, Clark K, Wagner-Riddle C, France J (2006) Methane and nitrous oxide emissions from Canadian animal agriculture: a review. Can J Anim Sci 86:135–158

    Article  CAS  Google Scholar 

  • Kightley D, Nedwell DB, Copper M (1995) Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl Environ Microbiol 61:592–601

    CAS  Google Scholar 

  • Kravchenko IK (2002) Methane oxidation in boreal peat soils treated with various nitrogen compounds. Plant Soil 242:157–162

    Article  CAS  Google Scholar 

  • Kunz A, Steinmetz RLR, Ramme MA, Coldebella A (2009) Effect of storage time on swine manure solid separation efficiency by screening. Bioresour Technol 100:1815–1818

    Article  CAS  Google Scholar 

  • Laguë C (2003) Greenhouse gas and odour emissions from pig production buildings and manure storage and treatment facilities. CSAE/SCGR 2003 Meeting, Montréal, Québec, July 6–9 2003, pp 1–14

  • Laguë C, Gaudet E, Agnew J, Fonstad TA (2005) Greenhouse gas emissions from liquid swine manure storage facilities in Saskatchewan. Trans ASABE 48:2289–2296

    Google Scholar 

  • Lannan MT (2000) Biofilter humidification options. Proceedings of the Water Environment Federation, pp 438–445

  • Lau E, Ahmad A, Steudler PA, Cavanaugh CM (2007) Molecular characterization of methanotrophic communities in forest soils that consume atmospheric methane. FEMS Microbiol Ecol 60:490–500

    Article  CAS  Google Scholar 

  • Le Bihan Y, Lessard P (2000) Monitoring biofilter clogging: biochemical characteristics of the biomass. Water Res 34:4284–4294

    Article  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Article  Google Scholar 

  • Leak DJ (1992) Biotechnological and applied aspects of methane and methanol utilizers. In: Murrell JC, Dalton H (eds) Methane and methanol utilizers. Plenum, New York, pp 245–282

    Google Scholar 

  • Leak DJ, Dalton H (1986a) Growth yield of methanotrophs. 2. A theoretical analysis. Appl Microbiol Biotechnol 23:477–481

    Article  CAS  Google Scholar 

  • Leak DJ, Dalton H (1986b) Growth yields of methanotrophs. 1. Effect of copper on the energetics of methane oxidation. Appl Microbiol Biotechnol 23:470–476

    Article  CAS  Google Scholar 

  • Leak DJ, Stanley SH, Dalton H (1985) Implications of the nature of methane monooxygenase on carbon assimilation in methanotrophs. In: Poole RK, Dow CS (eds) Microbial gas metabolism, mechanistic, metabolic, and biotechnological aspects. Academic, London, pp 201–208

    Google Scholar 

  • Lipscomb JD (1994) Biochemistry of the soluble methane monooxygenase. Ann Rev Microbiol 48:371–399

    Article  CAS  Google Scholar 

  • Martinez J, Guiziou F, Peu P, Gueutier V (2003) Influence of treatment techniques for pig slurry on methane emissions during subsequent storage. Biosys Eng 85:347–354

    Article  Google Scholar 

  • Massé DI, Croteau F, Patni NK, Masse L (2003) Methane emissions from dairy cow and swine manure slurries stored at 10 °C and 15 °C. Can Biosyst Eng 45:1–6

    Google Scholar 

  • Melse RW, Van Der Werf AW (2005) Biofiltration for mitigation of methane emission from animal husbandry. Environ Sci Technol 39:5460–5468

    Article  CAS  Google Scholar 

  • Min H, Chen ZY, Wu WX, Chen MC (2002) Microbial aerobic oxidation of methane in paddy soil. Nutr Cycling Agroecosyst 64:79–85

    Article  CAS  Google Scholar 

  • Mohanty SR, Bharati K, Deepa N, Rao VR, Adhya TK (2000) Influence of heavy metals on methane oxidation in tropical rice soils. Ecotoxicol Environ Saf 47:277–284

    Article  CAS  Google Scholar 

  • Møller HB (2001) Separation of slurry in a decanting centrifuge and a screw press as influenced by slurry characteristics. NJF-Seminar no. 320: Sustainable Handling and Utilisation of Livestock Manure from Animals to Plants. NJF-Section VII. Agricultural Engineering. Tjele, Denmark, 16–19 January 2001, pp 126–133

  • Møller HB, Lund I, Sommer SG (2000) Solid-liquid separation of livestock slurry: efficiency and cost. Bioresour Technol 74:223–229

    Article  Google Scholar 

  • Møller HB, Sommer SG, Ahring BK (2004) Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. J Environ Qual 33:27–36

    Article  Google Scholar 

  • Monteny GJ, Groenestein CM, Hilhorst MA (2001) Interactions and coupling between emissions of methane and nitrous oxide from animal husbandry. Nutr Cycl Agroecosyst 60:123–132

    Article  CAS  Google Scholar 

  • Monteny GJ, Banninik A, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agric Ecosyst Env 112:163–170

    Article  CAS  Google Scholar 

  • Mor S, De Visscher A, Ravindra K, Dahiya RP, Chandra A, Van Cleemput O (2006) Induction of enhanced methane oxidation in compost: temperature and moisture response. Waste Manag 26:381–388

    Article  CAS  Google Scholar 

  • Morgenroth E (2000) Opportunities for nutrient recovery in handling of animal residuals.Animal Residuals Management Conference, Kansas City, Missouri, Nov 12–14 2000, pp 1–10

  • Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Archiv Microbiol 173:325–332

    Article  CAS  Google Scholar 

  • Natural Resources Canada (2003) L'Atlas du Canada: Températures saisonnières. http://atlas.nrcan.gc.ca/site/francais/maps/archives/3rdedition/environment/climate/021. Accessed 24 Nov 2011

  • Nguyen HHT, Shiemke AK, Jacobs SJ, Hales BJ, Lidstrom ME, Chan SI (1994) The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 269:14995–15005

    CAS  Google Scholar 

  • Nguyen HH, Elliott SJ, Yip JH, Chan SI (1998) The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. Isolation and characterization. J Biol Chem 273:7957–7966

    Article  CAS  Google Scholar 

  • Nikiema J, Heitz M (2009) The influence of the gas flow rate during methane biofiltration on an inorganic packing material. Can J Chem Eng 87:136–142

    Article  Google Scholar 

  • Nikiema J, Bibeau L, Lavoie J, Brzezinski R, Vigneux J, Heitz M (2005) Biofiltration of methane: an experimental study. Chem Eng J 113:111–117

    Article  CAS  Google Scholar 

  • Nikiema J, Brzezinski R, Heitz M (2007) Elimination of methane generated from landfills by biofiltration: a review. Rev Environ Sci Biotechnol 6:261–284

    Article  CAS  Google Scholar 

  • Nikiema J, Brzezinski R, Heitz M (2010) Influence of phosphorus, potassium, and copper on methane biofiltration performance. Can J Civ Engi 37:335–345

    Article  CAS  Google Scholar 

  • Nyerges G, Stein LY (2009) Ammonia co-metabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol Lett 297:131–136

    Article  CAS  Google Scholar 

  • Park S, Brown KW, Thomas JC (2002) The effect of various environmental and design parameters on methane oxidation in a model biofilter. Waste Manag Res 20:434–444

    Article  CAS  Google Scholar 

  • Park K, Thompson AG, Marinier M, Clark K, Wagner-Riddle C (2006) Greenhouse gas emissions from stored liquid swine manure in a cold climate. Atmos Env 40:618–627

    Article  CAS  Google Scholar 

  • Park S, Lee C, Ryu CR (2009) Biofiltration for reducing methane emissions from modern sanitary landfills at the low methane generation stage. Water Air Soil Pollut 196:27

    Article  Google Scholar 

  • Petersen SO, Amon B, Gattinger A (2005) Methane oxidation in slurry storage surface crusts. J Environ Qual 34:455–461

    CAS  Google Scholar 

  • Schnell S, King GM (1994) Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl Env Microbiol 60:3514–3521

    CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Vuilleumier S (2011) Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol Lett 323:1–12

    Article  CAS  Google Scholar 

  • Shrestha M, Shrestha PM, Frenzel P, Conrad R (2010) Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere. ISME J 4:1545–1556

    Article  CAS  Google Scholar 

  • Shuler ML, Kargi F (2002) Bioprocess engineering: basic concept. Prentice-Hall, Inc., Upper Saddle River, NJ, USA

  • Sly LI, Bryant LJ, Cox JM, Anderson JM (1993) Development of a biofilter for the removal of methane from coal-mine ventilation atmospheres. Appl Microbiol Biotechnol 39:400–404

    Article  CAS  Google Scholar 

  • Smith KA, Charles DR, Moorhouse D (2000) Nitrogen excretion by farm livestock with respect to land spreading requirements and controlling nitrogen losses to ground and surface waters. Part 2: pigs and poultry. Bioresour Technol 71:183–194

    Article  CAS  Google Scholar 

  • Sommer SG, Petersen SO, Sørensen P, Poulsen HD, Møller HB (2007) Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage. Nutr Cycl Agroecosyst 78:27–36

    Article  CAS  Google Scholar 

  • Statistics Canada (2011) Statistiques financières des exploitations agricoles: Recettes monétaires agricoles. http://www40.statcan.gc.ca/l02/cst01/agri03a-fra.htm. Accessed 25 Nov 2011

  • Steed J, Hashimoto G (1994) Methane emissions from typical manure management systems. Bioresour Technol 50:123–130

    Article  CAS  Google Scholar 

  • Stein VB, Hettiaratchi JPA (2001) Methane oxidation in three Alberta soil: influence of soil parameters and methane flux rates. Environ Technol 22:101–111

    Article  CAS  Google Scholar 

  • Stiehl-Braun PA, Hartmann AA, Kandeler E, Buchmann N, Niklaus PA (2011) Interactive effects of drought and N fertilization on the spatial distribution of methane assimilation in grassland soils. Glob Chang Biol 17:2629–2639

    Article  Google Scholar 

  • Thompson AG, Wagner-Riddle C, Fleming R (2004) Emissions of N2O and CH4 during the composting of liquid swine manure. Environ Monit Assess 91:87–104

    Article  CAS  Google Scholar 

  • United States Department of Agriculture (2009) Briefing room: hogs trade. http://www.ers.usda.gov/Briefing/Hogs/trade.htm. Accessed 24 Nov 2011

  • van Hylckama Vlieg JE, Janssen DB (2001) Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes. J Biotechnol 85:81–102

    Article  Google Scholar 

  • Veillette M (2011) Biofiltration du méthane issu de l'industrie porcine: influence de l'ammonium. 1–104

  • Veillette M, Viens P, Avalos Ramirez A, Brzezinski R, Heitz M (2011) Effect of ammonium concentration on microbial population and performance of a biofilter treating air polluted with methane. Chem Eng J 171:1114–1123

    Article  CAS  Google Scholar 

  • Veillette M, Avalos Ramirez A, Heitz M (2012) Biofiltration of air polluted with methane at concentration levels similar to swine slurry emissions: influence of ammonium increments. J Env Sci Health A Article 47:1–12. doi:10.1080/10934529.2012.667327

    Google Scholar 

  • West AE, Schmidt SK (1999) Acetate stimulates atmospheric CH4 oxidation by an alpine tundra soil. Soil Biol Biochem 31:1649–1655

    Article  CAS  Google Scholar 

  • Westerman PW, Bicudo JR (2000) Tangential flow separation and chemical enhancement to recover swine manure solids, nutrients and metals. Bioresour Technol 73:1–11

    Article  CAS  Google Scholar 

  • Whalen SC (2000) Influence of N and non-N salts on atmospheric methane oxidation by upland boreal forest and tundra soils. Biol Fertil Soils 31:279–287

    Article  CAS  Google Scholar 

  • Wilshusen JH, Hettiaratchi JPA, De Visscher A, Saint-Fort R (2004) Methane oxidation and formation of EPS in compost: effect of oxygen concentration. Environ Pollut 129:305–314

    Article  CAS  Google Scholar 

  • Zahn JA, Hatfield JL, Laird DA, Hart TT, Do YS, DiSpirito AA (2001) Functional classification of swine manure management systems based on effluent and gas emission characteristics. J Environ Qual 30:635–647

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a strategic grant from the Natural Sciences and Engineering Council of Canada to Michèle Heitz in partnership with le Centre de Recherche Industrielle du Québec and Viaporc inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michèle Heitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veillette, M., Girard, M., Viens, P. et al. Function and limits of biofilters for the removal of methane in exhaust gases from the pig industry. Appl Microbiol Biotechnol 94, 601–611 (2012). https://doi.org/10.1007/s00253-012-3998-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3998-z

Keywords

Navigation