Skip to main content
Log in

Antioxidant enzymes activities of Burkholderia spp. strains—oxidative responses to Ni toxicity

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Increased agriculture production associated with intense application of herbicides, pesticides, and fungicides leads to soil contamination worldwide. Nickel (Ni), due to its high mobility in soils and groundwater, constitutes one of the greatest problems in terms of environmental pollution. Metals, including Ni, in high concentrations are toxic to cells by imposing a condition of oxidative stress due to the induction of reactive oxygen species (ROS), which damage lipids, proteins, and DNA. This study aimed to characterize the Ni antioxidant response of two tolerant Burkholderia strains (one isolated from noncontaminated soil, SNMS32, and the other from contaminated soil, SCMS54), by measuring superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Ni accumulation and bacterial growth in the presence of the metal were also analyzed. The results showed that both strains exhibited different trends of Ni accumulation and distinct antioxidant enzymes responses. The strain from contaminated soil (SCMS54) exhibited a higher Ni biosorption and exhibited an increase in SOD and GST activities after 5 and 12 h of Ni exposure. The analysis of SOD, CAT, and GR by nondenaturing PAGE revealed the appearance of an extra isoenzyme in strain SCMS54 for each enzyme. The results suggest that the strain SCMS54 isolated from contaminated soil present more plasticity with potential to be used in soil and water bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allocati N, Federici L, Masulli M, Di Ilio C (2008) Glutathione transferases in bacteria. FEBS J 276:58–75

    Article  Google Scholar 

  • Azcón R, Perálvarez MDC, Roldán A, Barea J-M (2010) Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Microbial Ecol 59:668–677

    Article  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay aprlicable to acrylamide gels. Anal Biochem 287:276–287

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bulbovas P, Souza SR, Esposito JBN, Moraes RM, Alves ES, Domingos M, Azevedo RA (2014) Assessment of the ozone tolerance of two soybean cultivars (Glycine max cv. Sambaíba and Tracajá) cultivated in Amazonian areas. Environ Sci Pollut Res 21:10514–10524

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2010) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    Google Scholar 

  • Chaga G, Widersten M, Andersson L, Porath J, Danielson UH, Mannervik B (1994) Engineering of a metal coordinating site into human glutathione transferase M1-1 based on immobilized metal ion affinity chromatography of homologous rat enzymes. Protein Eng Des Sel 7:1115–1119

    Article  CAS  Google Scholar 

  • Cheng Z, Wei YYC, Sung WWL, Glick BR, McConkey BJ (2009) Proteomic analysis of the response of the plant growth-promoting bacterium Pseudomonas putida UW4 to nickel stress. Proteome Sci 7:18

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    Article  CAS  Google Scholar 

  • Dorogházi OT, Kastori RR, Maksimović IV (2010) Nickel translocation from seed during germination and growth of young maize plants. Matica Srpska J Nat Sci 119:17–25

    Article  Google Scholar 

  • Dourado MN, Martins PF, Quecine MC, Piotto FA, Souza LA, Franco MR, Tezotto T, Azevedo RA (2013) Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato. Ann Appl Biol 163:494–507

    CAS  Google Scholar 

  • Dourado MN, Souza LA, Martins PF, Peters LP, Piotto FA, Azevedo RA (2014) Burkholderia sp. SCMS54 triggers a global stress defense in tomato enhancing cadmium tolerance. Water Air Soil Poll 225:2159

    Article  Google Scholar 

  • Dunn KLRD, Farrant JL, Langford PR, Kroll JS (2003) Bacterial [Cu, Zn]-cofactored superoxide dismutase protects opsonized, encapsulated Neisseria meningitides from phagocytosis by human monocytes/macrophages. Infect Immunol 71:1604–1607

  • Dworkin M, Foster JW (1958) Experiments with some microorganisms wich utilize ethane and hydrogen. J Bacteriol 75:592–603

    CAS  Google Scholar 

  • Eerd LV, Hoagland R, Zablotowicz R, Hall J (2003) Pesticide metabolism in plants and microorganisms. Weed Sci 51:472–495

    Article  Google Scholar 

  • Esposito JBN, Esposito BP, Azevedo RA, Cruz LS, Silva LC, Souza SR (2015) Protective effect of Mn(III)–desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max “Sambaiba”. Environ Sci Pollut Res 22:5315–5324

    Article  CAS  Google Scholar 

  • Farr SB, Kogoma T (1991) Oxidative Stress Responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55:561–585

    CAS  Google Scholar 

  • Ferraz P, Fidalgo F, Almeida A, Teixeira J (2012) Phytostabilization of nickel by the zinc and cadmium hyperaccumulator Solanum nigrum L. Are metallothioneins involved? Plant Physiol Biochem 57:254–260

    Article  CAS  Google Scholar 

  • Geslin C, Llanos J, Prieur D, Jeanthon C (2001) The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res Microbiol 152:901–905

    Article  CAS  Google Scholar 

  • Ghelfi A, Gaziola SA, Cia MC, Chabregas SM, Falco MC, Kuser-Falcão PR, Azevedo RA (2011) Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum. Ann Appl Biol 159:267–280

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol 59:315–318

    Article  CAS  Google Scholar 

  • Gomes-Junior RA, Moldes CA, Delite FS, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA (2006) Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiol Biochem 44:420–429

    Article  CAS  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  Google Scholar 

  • Gratão PL, Pompeu GB, Capaldi FR, Vitorello VA, Lea PJ, Azevedo RA (2008) Antioxidant response of Nicotiana tabacum cv. Bright Yellow 2 cells to cadmium and nickel stress. Plant Cell Tiss Organ Cult 94:73–83

    Article  Google Scholar 

  • Gratão PL, Monteiro CC, Carvalho RF, Tezotto T, Piotto FA, Peres LEP, Azevedo RA (2012) Biochemical dissection of diageotropica and never ripe tomato mutants to Cd-stressful conditions. Plant Physiol Biochem 56:79–96

    Article  Google Scholar 

  • Guelfi A, Azevedo RA, Lea PJ, Molina SMG (2003) Growth innhibition of the filamentous fungus Aspergillus nidulans by cadmium: and antioxidant enzyme approach. J Gen Appl Microbiol 49:63–73

    Article  CAS  Google Scholar 

  • Gupta A, Kumar M, Goel R (2004) Bioaccumulation properties of nickel-, cadmium-, and chromium-resistant mutants of Pseudomonas aeruginosa NBRI 4014 at alkaline pH. Biol Trace Elem Res 99:269–277

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Han Y-H, Seo HA, Kim GH, Lee CK, Kang YK, Ryu KH, Chung YJ (2010) A histidine substitution confers metal binding affinity to a Schistosoma japonicum glutathione S-transferase. Protein Expres Purif 73:74–77

    Article  CAS  Google Scholar 

  • Hassan W, Bano R, Bashir F, David J (2014) Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Environ Sci Pollut Res 21:10983–10996

    Article  CAS  Google Scholar 

  • Harrison JJ, Tremaroli V, Stan MA, Chan CS, Vacchi-Suzzi C, Heyne BJ, Parsek MR, Ceri H, Turner RJ (2009) Chromosomal antioxidant genes have metal ion-specific roles as determinants of bacterial metal tolerance. Environ Microbiol 11:2491–2509

    Article  CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175

    Article  CAS  Google Scholar 

  • Kanazawa S, Mori K (1996) Isolation of cadmium-resistant bacteria and their resistance mechanisms. Soil Sci Plant Nutr 42:725–730

    Article  CAS  Google Scholar 

  • Keith KE, Valvano MA (2007) Characterization of SodC, a periplasmic superoxide dismutase from Burkholderia cenocepacia. Infect Immun 75:2451–2460

    Article  CAS  Google Scholar 

  • Kraus TE, Mckersie BD, Fletcher RA (1995) Paclobutrazol-induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity. J Plant Physiol 145:570–576

    Article  CAS  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  CAS  Google Scholar 

  • Luvizotto DM, Marcon J, Andreote FD, Dini-Andreote F, Neves AAC, Araújo WL, Pizzirani-Kleiner AA (2010) Genetic diversity and plant-growth related features of Burkholderia spp. from sugarcane roots. World J Microbiol Biotechnol 26:1829–1836

    Article  CAS  Google Scholar 

  • Ma X-X, Jiang Y-L, He Y-X, Bao R, Chen Y, Zhou C-Z (2009) Structures of yeast glutathione-S-transferase Gtt2 reveal a new catalytic type of GST family. EMBO Rep 10:1320–1326

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Vicente JAF, Freitas H (2011) Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain srs8 for the improvement of nickel phytoextraction by energy crops. Int J Phytoremediation 13:126–139

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L). Chemosphere 69:220–228

    Article  CAS  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13

    Article  CAS  Google Scholar 

  • Maksimović I, Kastori R, Krstić L, Luković J (2007) Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings. Biol Plant 51:589–592

    Article  Google Scholar 

  • Martins PF, Carvalho G, Gratão PL, Dourado MN, Pileggi M, Araújo WL, Azevedo RA (2011) Effects of the herbicides acetochlor and metolachlor on antioxidant enzymes in soil bacteria. Process Biochem 46:1186–1195

    Article  CAS  Google Scholar 

  • Masip L, Veeravalli K, Georgiou G (2006) The many faces of glutathione in bacteria. Antioxid Redox Signal 8:753–762

    Article  CAS  Google Scholar 

  • Nogueirol RC, Monteiro FA, Gratão PL, Borgo L, Azevedo RA (2015) Tropical soils with high aluminum concentrations cause oxidative stress in two tomato genotypes. Environ Monit Assess 187:73

    Article  Google Scholar 

  • Olchanheski LR, Dourado MN, Beltrame FL, Zielinski AAF, Demiate IM, Pileggi SAV, Azevedo RA, Sadowsky MJ, Pileggi M (2014) Mechanisms of tolerance and high degradation capacity of the herbicide mesotrione by Escherichia coli Strain DH5-a. PloS One 9:e99960

    Article  Google Scholar 

  • Pacheco CC, Passos JF, Castro AR, Moradas-Ferreira P, De Marco P (2008) Role of respiration and glutathione in cadmium-induced oxidative stress in Escherichia coli K-12. Arch Microbiol 189:271–278

    Article  CAS  Google Scholar 

  • Payne GW, Ramette A, Rose HL, Weightman AJ, Jones TH, Tiedje JM, Mahenthiralingam E (2006) Application of a recA gene-based identification approach to the maize rhizosphere reveals novel diversity in Burkholderia species. FEMS Microbiol Lett 259:126–132

    Article  CAS  Google Scholar 

  • Peters LP, Carvalho G, Martins PF, Dourado MN, Vilhena MB, Pileggi M, Azevedo RA (2014) Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria. Plos One 9:e112271

  • Pilon-Smits E, Ebskamp M, Paul MJ, Jeuken M, Weisbeek PJ, Smeekens S (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130

    CAS  Google Scholar 

  • Rehman A, Anjum MS (2011) Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environ Monit Assess 174:585–595

    Article  CAS  Google Scholar 

  • Ritz D, Beckwith J (2001) Roles of thiol - redox pathways in Bacteria. Annu Rev Microbiol 55:21–48

    Article  CAS  Google Scholar 

  • Sangali S, Brandelli A (2000) Feather keratin hydrolysis by a Vibrio sp. strain kr2. J Appl Microbiol 89:735–743

    Article  CAS  Google Scholar 

  • Sharma S, Singh B, Manchanda VK (2014) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946–962

    Article  Google Scholar 

  • Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsveld J, Cuypers A (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35:334–346

    Article  CAS  Google Scholar 

  • Skopelitou K, Dhavala P, Papageorgiou AC, Labrou NE (2012) A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily. PloS One 7:e34263

    Article  CAS  Google Scholar 

  • Smirnova GV, Oktyabrsky ON (2005) Glutathione in bacteria. Biochemistry 70:1199–1211

    CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5’-dithiobis(2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  CAS  Google Scholar 

  • Tezotto T, Favarin JL, Azevedo RA, Alleoni LRF, Mazzafera P (2012) Coffee is highly tolerant to cadmium, nickel and zinc: plant and soil nutritional status, metal distribution and bean yield. Field Crops Res 125:25–34

    Article  Google Scholar 

  • Tuggle C, Fuchs J (1985) Glutathione reductase is not required for maintenance of reduced glutathione in Escherichia coli K-12. J Bacteriol 162:448–450

    CAS  Google Scholar 

  • Ullah A, Mushtaq H, Ali H, Munis MFH, Javed MT, Chaudhary HJ (2014) Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Environ Sci Pollut Res 22:2505–2514

    Article  Google Scholar 

  • Vuilleumier M, Pagni S (2002) The elusive roles of bacterial glutathione S- transferases: new lessons from genomes. Appl Microbiol Biotechnol 58:138–146

    Article  CAS  Google Scholar 

  • Weyens N, Truyens S, Saenen E, Boulet J, Dupae J, Taghavi S, Van der Lelie D, Carleer R, Vangronsveld J (2011) Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation. Int J Phytoremediation 13:244–255

    Article  CAS  Google Scholar 

  • Woodbury W, Spencer A, Stahman M (1971) Improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 547:301–305

    Article  Google Scholar 

  • Xia J-L, Wu S, Zhang R, Zhang C, He H, Jiang H, Nie Z, Qiu G (2011) Effects of copper exposure on expression of glutathione-related genes in Acidithiobacillus ferrooxidans. Curr Microbiol 62:1460–1466

    Article  CAS  Google Scholar 

  • Yilmaz S, Widersten M, Emahazion T, Mannervik B (1995) Generation of a Ni(II) binding site by introduction of a histidine cluster in the structure of human glutathione transferase A1-1. Protein Eng Des Sel 8:1163–1169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP – Grant no. 2009/54676-0), which also granted to M.N.D. and P.F.M. graduate scholarships (FAPESP no. 2011/50368-9, 2007/59516-5, respectively). Thanks are also due to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq – Grant no. 477652/2010-7), which also granted to R.A.A. a research fellowship (CNPq no. 302540/2011-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Azevedo.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dourado, M.N., Franco, M.R., Peters, L.P. et al. Antioxidant enzymes activities of Burkholderia spp. strains—oxidative responses to Ni toxicity. Environ Sci Pollut Res 22, 19922–19932 (2015). https://doi.org/10.1007/s11356-015-5204-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5204-1

Keywords

Navigation