Skip to main content
Log in

In-Situ Characterization on Fracture Toughness of Thermal Barrier Coatings Under Tension by J-Integral with Digital Image Correlation at High Temperatures

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

The elastic–plastic fracture toughness (Jc) is an important mechanical parameter for studying the failure behavior of air plasma-sprayed (APS) thermal barrier coatings (TBC) at high temperatures.

Objective

This study aims to: (1) develop an effective test method to characterize the Jc of TBC at high temperatures; (2) acquire accurate Jc data for TBC at high temperatures; (3) analyze the influence of plasticity of top-coat on the Jc characterization.

Methods

The elastic–plastic Ramberg–Osgood equation of the ceramic top-coat and the deformation fields of single edge notched tension (SENT) specimens were measured by high-temperature in-situ tension with digital image correlation (DIC) system. The Jc of TBC was calculated by the numerical J-integral with DIC-measured (DIC-J) deformation fields by adopting Ramberg–Osgood equation of the top-coat. The finite element analysis (FEA) method was adopted to analyze the influence of plasticity of top-coat on the Jc characterization.

Results

The curves of Jc varying with crack propagation length (Δa) of TBC were obtained and were expressed as JR = 24.47 × [ 1 + 1.0446 × (\(\widetilde{\Delta a}\))0.7624] J/m2 and JR = 16.52 × [ 1 + 1.4806 × (\(\widetilde{\Delta a}\))0.6742] J/m2 at 800 and 1000 ℃, respectively.

Conclusions

A high-temperature in-situ tensile test of SENT specimens combined with the DIC-J method was developed to characterize Jc of TBC. The Jc of TBC displays a rising resistance curve behavior, and FEA results indicated that Jc would be underestimated without considering the plasticity of the top-coat at 800 and 1000 ℃.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Raw images and data generated during the current study are available from the corresponding author upon reasonable request.

References

  1. Lepeshkin AR, Bichkov NG, Ilinskaja OI, Nazarov VV (2017) Investigations of thermal barrier coatings of turbine parts using gas flame heating. J Phys Conf Ser 899:072002. https://doi.org/10.1088/1742-6596/899/7/072002

    Article  Google Scholar 

  2. Rudrapatna N, Lutz B, Kington H (2022) Next Generation Air Plasma Spray Porous Thermal Barrier Coatings for Gas Turbine Combustors. J Eng Gas Turbines Power. https://doi.org/10.1115/1.4055919

    Article  Google Scholar 

  3. Bose S, DeMasi-Marcin J (1997) Thermal barrier coating experience in gas turbine engines at Pratt & Whitney. J Therm Spray Technol 6:99–104. https://doi.org/10.1007/BF02646318

    Article  Google Scholar 

  4. Bison P, Cernuschi F, Capelli S (2011) A thermographic technique for the simultaneous estimation of in-plane and in-depth thermal diffusivities of TBCs. Surf Coat Technol 205:3128–3133. https://doi.org/10.1016/j.surfcoat.2010.11.013

    Article  Google Scholar 

  5. Kwon J-Y, Lee J-H, Jung Y-G, Paik U (2006) Effect of bond coat nature and thickness on mechanical characteristic and contact damage of zirconia-based thermal barrier coatings. Surf Coat Technol 201:3483–3490. https://doi.org/10.1016/j.surfcoat.2006.07.240

    Article  Google Scholar 

  6. Ebrahimzade V, Haasler D, Malzbender J (2021) Failure mechanism and lifetime of various laser-drilled APS-TBC systems under LCF conditions. Eng Fail Anal 127:105526. https://doi.org/10.1016/j.engfailanal.2021.105526

    Article  Google Scholar 

  7. Naumenko D, Shemet V, Singheiser L, Quadakkers WJ (2009) Failure mechanisms of thermal barrier coatings on MCrAlY-type bondcoats associated with the formation of the thermally grown oxide. J Mater Sci 44:1687–1703. https://doi.org/10.1007/s10853-009-3284-3

    Article  Google Scholar 

  8. Gell M, Xie L, Jordan EH, Padture NP (2004) Mechanisms of spallation of solution precursor plasma spray thermal barrier coatings. Surf Coat Technol 188–189:101–106. https://doi.org/10.1016/j.surfcoat.2004.08.004

    Article  Google Scholar 

  9. Renusch D, Echsler H, Schütze M (2004) Progress in life time modeling of APS-TBC Part II: critical strains, macro-cracking, and thermal fatigue. Mater High Temp 21:77–86. https://doi.org/10.1179/mht.2004.011

    Article  Google Scholar 

  10. Giolli C, Scrivani A, Rizzi G et al (2009) Failure Mechanism for Thermal Fatigue of Thermal Barrier Coating Systems. J Therm Spray Technol 18:223–230. https://doi.org/10.1007/s11666-009-9307-4

    Article  Google Scholar 

  11. Ang ASM, Berndt CC (2014) A review of testing methods for thermal spray coatings. Int Mater Rev 59:179–223. https://doi.org/10.1179/1743280414Y.0000000029

    Article  Google Scholar 

  12. Zhu W, Wu Q, Yang L, Zhou YC (2020) In situ characterization of high temperature elastic modulus and fracture toughness in air plasma sprayed thermal barrier coatings under bending by using digital image correlation. Ceram Int 46:18526–18533. https://doi.org/10.1016/j.ceramint.2020.04.158

    Article  Google Scholar 

  13. Mao WG, Chen YY, Wang YJ et al (2018) A multilayer structure shear lag model applied in the tensile fracture characteristics of supersonic plasma sprayed thermal barrier coating systems based on digital image correlation. Surf Coat Technol 350:211–226. https://doi.org/10.1016/j.surfcoat.2018.07.013

    Article  Google Scholar 

  14. Yao WB, Dai CY, Mao WG et al (2012) Acoustic emission analysis on tensile failure of air plasma-sprayed thermal barrier coatings. Surf Coat Technol 206:3803–3807. https://doi.org/10.1016/j.surfcoat.2012.03.050

    Article  Google Scholar 

  15. Liu H, Liang L, Wang Y, Wei Y (2016) Fracture Characteristics and Damage Evolution of Coating Systems Under Four-Point Bending. Int J Appl Ceram Technol 13:1043–1052. https://doi.org/10.1111/ijac.12605

    Article  Google Scholar 

  16. Malzbender J, Steinbrech RW (2012) Fracture resistance of atmospheric plasma sprayed thermal barrier coatings. Surf Coat Technol 209:97–102. https://doi.org/10.1016/j.surfcoat.2012.08.035

    Article  Google Scholar 

  17. Jiang P, Fan X, Sun Y et al (2018) Bending-driven failure mechanism and modelling of double-ceramic-layer thermal barrier coating system. Int J Solids Struct 130–131:11–20. https://doi.org/10.1016/j.ijsolstr.2017.10.024

    Article  Google Scholar 

  18. Zhang X, Watanabe M, Kuroda S (2013) Effects of residual stress on the mechanical properties of plasma-sprayed thermal barrier coatings. Eng Fract Mech 110:314–327. https://doi.org/10.1016/j.engfracmech.2013.08.016

    Article  Google Scholar 

  19. Xiao B, Huang X, Robertson T et al (2020) Sintering resistance of suspension plasma sprayed 7YSZ TBC under isothermal and cyclic oxidation. J Eur Ceram Soc 40:2030–2041. https://doi.org/10.1016/j.jeurceramsoc.2019.12.046

    Article  Google Scholar 

  20. Gao M, Xu N, Zhang J et al (2021) Influence of mechanical properties on thermal shock resistance of TBCs. Surf Eng 37:572–580. https://doi.org/10.1080/02670844.2020.1812478

    Article  Google Scholar 

  21. Chen Y, Zhang X, Zhao X et al (2019) Measurements of elastic modulus and fracture toughness of an air plasma sprayed thermal barrier coating using micro-cantilever bending. Surf Coat Technol 374:12–20. https://doi.org/10.1016/j.surfcoat.2019.05.031

    Article  Google Scholar 

  22. Li CJ, Wang WZ, He Y (2004) Dependency of fracture, toughness of plasma sprayed Al2O3 coatings on lamellar structure. J Therm Spray Technol 13:425–431. https://doi.org/10.1361/10599630419364

    Article  Google Scholar 

  23. Ostojic P, Mcpherson R (1988) Determining the Critical Strain-Energy Release Rate of Plasma-Sprayed Coatings Using a Double-Cantilever-Beam Technique. J Am Ceram Soc 71:891–899. https://doi.org/10.1111/j.1151-2916.1988.tb07542.x

    Article  Google Scholar 

  24. Thurn G, Schneider GA, Bahr H-A, Aldinger F (2000) Toughness anisotropy and damage behavior of plasma sprayed ZrO2 thermal barrier coatings. Surf Coat Technol 123:147–158. https://doi.org/10.1016/S0257-8972(99)00528-9

    Article  Google Scholar 

  25. Singh M, Sahu PK, Sampath S, Jonnalagadda KN (2024) Fracture toughness of freestanding plasma sprayed yttria stabilized zirconia coatings via in situ tensile experiments. J Eur Ceram Soc 44:2499–2511. https://doi.org/10.1016/j.jeurceramsoc.2023.10.074

    Article  Google Scholar 

  26. Bai H, Wang Z, Luo S et al (2023) A modified single edge V-notched beam method for evaluating surface fracture toughness of thermal barrier coatings. Appl Math Mech 44:693–710. https://doi.org/10.1007/s10483-023-3001-6

    Article  Google Scholar 

  27. Zhu X-K, Joyce JA (2012) Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Eng Fract Mech 85:1–46. https://doi.org/10.1016/j.engfracmech.2012.02.001

    Article  Google Scholar 

  28. Alotaibi M (2022) Application of an Image-Based Model of the Elastic Modulus of Porous Thermal Barrier Coatings. Met Mater Int 28:1794–1808. https://doi.org/10.1007/s12540-021-01084-6

    Article  Google Scholar 

  29. Waki H, Oikawa A, Kato M et al (2014) Evaluation of the Accuracy of Young’s Moduli of Thermal Barrier Coatings Determined on the Basis of Composite Beam Theory. J Therm Spray Technol 23:1291–1301. https://doi.org/10.1007/s11666-014-0145-7

    Article  Google Scholar 

  30. Qu Z, Wei K, He Q et al (2018) High temperature fracture toughness and residual stress in thermal barrier coatings evaluated by an in-situ indentation method. Ceram Int 44:7926–7929. https://doi.org/10.1016/j.ceramint.2018.01.230

    Article  Google Scholar 

  31. Baufeld B, Messerschmidt U, Bartsch M, Baither D (1995) Plasticity of Cubic Zirconia between 700 °C and 1150 °C Observed by Macroscopic Compression and by In Situ Tensile Straining Tests. Key Eng Mater 97–98:431–436. https://doi.org/10.4028/www.scientific.net/KEM.97-98.431

    Article  Google Scholar 

  32. Cho J, Li J, Li Q et al (2018) In-situ high temperature micromechanical testing of ultrafine grained yttria-stabilized zirconia processed by spark plasma sintering. Acta Mater 155:128–137. https://doi.org/10.1016/j.actamat.2018.05.062

    Article  Google Scholar 

  33. Messerschmidt U, Baither D, Baufeld B, Bartsch M (1997) Plastic deformation of zirconia single crystals: a review. Mater Sci Eng A 233:61–74. https://doi.org/10.1016/S0921-5093(97)00050-6

    Article  Google Scholar 

  34. He R, Qu Z, Pei Y, Fang D (2017) High temperature indentation tests of YSZ coatings in air up to 1200°C. Mater Lett 209:5–7. https://doi.org/10.1016/j.matlet.2017.07.091

    Article  Google Scholar 

  35. Jeon S-W, Lee K-W, Kim JY et al (2017) Estimation of fracture toughness of metallic materials using instrumented indentation: critical indentation stress and strain model. Exp Mech 57:1013–1025. https://doi.org/10.1007/s11340-016-0226-2

    Article  Google Scholar 

  36. Jungk J, Boyce B, Buchheit T et al (2006) Indentation fracture toughness and acoustic energy release in tetrahedral amorphous carbon diamond-like thin films. Acta Mater 54:4043–4052. https://doi.org/10.1016/j.actamat.2006.05.003

    Article  Google Scholar 

  37. ASTM E1820–23B (2023) Standard test method for measurement of fracture toughness

  38. Erdogan F (2000) Fracture mechanics. Int J Solids Struct 37:171–183. https://doi.org/10.1016/S0020-7683(99)00086-4

    Article  MathSciNet  Google Scholar 

  39. Rice JR, Rosengren GF (1968) Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16:1–12. https://doi.org/10.1016/0022-5096(68)90013-6

    Article  Google Scholar 

  40. McNeill SR, Peters WH, Sutton MA (1987) Estimation of stress intensity factor by digital image correlation. Eng Fract Mech 28:101–112. https://doi.org/10.1016/0013-7944(87)90124-X

    Article  Google Scholar 

  41. Roux S, Réthoré J, Hild F (2009) Digital image correlation and fracture: An advanced technique for estimating stress intensity factors of 2D and 3D cracks. J Phys Appl Phys. https://doi.org/10.1088/0022-3727/42/21/214004

    Article  Google Scholar 

  42. Yates JR, Zanganeh M, Tai YH (2010) Quantifying crack tip displacement fields with DIC. Eng Fract Mech 77:2063–2076. https://doi.org/10.1016/j.engfracmech.2010.03.025

    Article  Google Scholar 

  43. Becker TH, Mostafavi M, Tait RB, Marrow TJ (2012) An approach to calculate the J-integral by digital image correlation displacement field measurement. Fatigue Fract Eng Mater Struct 35:971–984. https://doi.org/10.1111/j.1460-2695.2012.01685.x

    Article  Google Scholar 

  44. Jandejsek I, Gajdoš L, Šperl M, Vavřík D (2017) Analysis of standard fracture toughness test based on digital image correlation data. Eng Fract Mech 182:607–620. https://doi.org/10.1016/j.engfracmech.2017.05.045

    Article  Google Scholar 

  45. Yin Y, Wu L, Li J, Xie H (2019) High-Temperature Fracture Mechanics Parameter Measurement and Yielding Zone Analysis of Superalloy GH4169 Based on Single-Lens 3D Digital Image Correlation. Exp Mech 59:953–962. https://doi.org/10.1007/s11340-019-00490-7

    Article  Google Scholar 

  46. Yin Y, He W, Xie H, Wu L (2020) High-temperature fatigue crack propagation study of superalloy GH4169 by single-lens 3D digital image correlation. Sci China Technol Sci 63:693–704. https://doi.org/10.1007/s11431-019-9525-3

    Article  Google Scholar 

  47. Kodaira Y, Miura T, Ito S et al (2021) Evaluation of crack propagation behavior of porous polymer membranes. Polym Test 96:107124. https://doi.org/10.1016/j.polymertesting.2021.107124

    Article  Google Scholar 

  48. Tracy J, Waas A, Daly S (2015) Experimental assessment of toughness in ceramic matrix composites using the J-integral with digital image correlation part II: application to ceramic matrix composites. J Mater Sci 50:4659–4671. https://doi.org/10.1007/s10853-015-9017-x

    Article  Google Scholar 

  49. Ouyang J, Yang W, Cao P, Han B (2023) The fracture behaviour of cement bitumen emulsion mixture through the digital image correlation (DIC) method. Int J Pavement Eng 24:2220065. https://doi.org/10.1080/10298436.2023.2220065

    Article  Google Scholar 

  50. ASTM E21–20 (2021) Standard test methods for elevated temperature tension tests of metallic materials

  51. ASTM C1273–18 (2018) Standard test method for tensile strength of monolithic advanced ceramics at ambient temperatures

  52. Gao W, Lu J, Zhou J et al (2022) Effect of grain size on deformation and fracture of Inconel718: an in-situ SEM-EBSD-DIC investigation. Mater Sci Eng A 861:144361. https://doi.org/10.1016/j.msea.2022.144361

    Article  Google Scholar 

  53. ASTM C1421–18 (2018) Standard test methods for determination of fracture toughness of advanced ceramics at ambient temperature

  54. Kumar A, Moledina J, Liu Y et al (2021) Nano-micro-structured 6%–8% YSZ thermal barrier coatings: a comprehensive review of comparative performance analysis. Coatings 11:1474. https://doi.org/10.3390/coatings11121474

    Article  Google Scholar 

  55. Yoneyama S, Arikawa S, Kusayanagi S, Hazumi K (2014) Evaluating J-integral from displacement fields measured by digital image correlation. Strain 50:147–160. https://doi.org/10.1111/str.12074

    Article  Google Scholar 

  56. Justin B (2023) 2D Digital image correlation matlab software

  57. Arrayago I, Real E, Gardner L (2015) Description of stress–strain curves for stainless steel alloys. Mater Des 87:540–552. https://doi.org/10.1016/j.matdes.2015.08.001

    Article  Google Scholar 

  58. Bruck HA, McNeill SR, Sutton MA, Peters WH (1989) Digital image correlation using Newton-Raphson method of partial differential correction. Exp Mech 29:261–267. https://doi.org/10.1007/BF02321405

    Article  Google Scholar 

  59. Hutchinson JW (1968) Singular behaviour at the end of a tensile crack in a hardening material. J Mech Phys Solids 16:13–31. https://doi.org/10.1016/0022-5096(68)90014-8

    Article  Google Scholar 

  60. Rahman S (1995) A stochastic model for elastic-plastic fracture analysis of circumferential through-wall-cracked pipes subject to bending. Eng Fract Mech 52:265–288. https://doi.org/10.1016/0013-7944(95)00018-Q

    Article  Google Scholar 

  61. Luo S, Bai H, Huang R et al (2022) An in situ micro-indentation apparatus for investigating mechanical parameters of thermal barrier coatings under temperature gradient. Rev Sci Instrum 93:045102. https://doi.org/10.1063/5.0083087

    Article  Google Scholar 

  62. Lu Z, Feng Y, Peng G et al (2014) Estimation of surface equi-biaxial residual stress by using instrumented sharp indentation. Mater Sci Eng A 614:264–272. https://doi.org/10.1016/j.msea.2014.07.041

    Article  Google Scholar 

  63. Suresh S, Giannakopoulos AE (1998) A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater 46:5755–5767. https://doi.org/10.1016/S1359-6454(98)00226-2

    Article  Google Scholar 

  64. Ma L, Zhang L, Guo F et al (2021) High-Temperature Mechanical Behavior Assessment based on a Developed Constitutive Model of Inconel 718 Fabricated by Selective Laser Melting. Adv Eng Mater 23:2100232. https://doi.org/10.1002/adem.202100232

    Article  Google Scholar 

  65. Yin Q, Wen Z, Wang J et al (2022) Microstructure characterization and damage coupled constitutive modeling of nickel-based single-crystal alloy with different orientations. Mater Sci Eng A 853:143761. https://doi.org/10.1016/j.msea.2022.143761

    Article  Google Scholar 

  66. Wei Q, Zhu J, Chen W (2016) Anisotropic Mechanical Properties of Plasma-Sprayed Thermal Barrier Coatings at High Temperature Determined by Ultrasonic Method. J Therm Spray Technol 25:605–612. https://doi.org/10.1007/s11666-016-0378-8

    Article  Google Scholar 

  67. ASTM D6068–10 (2018) Standard test method for determining J-R Curves of plastic materials

  68. Anderson TL (2017) Fracture mechanics: fundamentals and applications, 4th edn. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos.12172048, 12027901) and National Science and Technology Major Project (2019-VII-0007-0147).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Qu or H. Yang.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, H., Qu, Z., Yang, H. et al. In-Situ Characterization on Fracture Toughness of Thermal Barrier Coatings Under Tension by J-Integral with Digital Image Correlation at High Temperatures. Exp Mech (2024). https://doi.org/10.1007/s11340-024-01061-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11340-024-01061-1

Keywords

Navigation