Skip to main content

Advertisement

Log in

Surface Curvature as a Classifier of Abdominal Aortic Aneurysms: A Comparative Analysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An abdominal aortic aneurysm (AAA) carries one of the highest mortality rates among vascular diseases when it ruptures. To predict the role of surface curvature in rupture risk assessment, a discriminatory analysis of aneurysm geometry characterization was conducted. Data was obtained from 205 patient-specific computed tomography image sets corresponding to three AAA population subgroups: patients under surveillance, those that underwent elective repair of the aneurysm, and those with an emergent repair. Each AAA was reconstructed and their surface curvatures estimated using the biquintic Hermite finite element method. Local surface curvatures were processed into ten global curvature indices. Statistical analysis of the data revealed that the L2-norm of the Gaussian and Mean surface curvatures can be utilized as classifiers of the three AAA population subgroups. The application of statistical machine learning on the curvature features yielded 85.5% accuracy in classifying electively and emergent repaired AAAs, compared to a 68.9% accuracy obtained by using maximum aneurysm diameter alone. Such combination of non-invasive geometric quantification and statistical machine learning methods can be used in a clinical setting to assess the risk of rupture of aneurysms during regular patient follow-ups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Batchelor, P. G., A. D. Castellano Smith, D. L. Hill, D. J. Hawkes, T. C. Cox, and A. F. Dean. Measures of folding applied to the development of the human fetal brain. IEEE Trans. Med. Imaging 21:953–965, 2002.

    Article  PubMed  Google Scholar 

  2. Brady, A. R., S. G. Thompson, F. G. Fowkes, R. M. Greenhalgh, and J. T. Powell. Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation 110(1):16–21, 2004.

    Article  PubMed  Google Scholar 

  3. Fillinger, M. F., S. P. Marra, M. L. Raghavan, and F. E. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37:724–732, 2003.

    Article  PubMed  Google Scholar 

  4. Giannoglou, G., G. Giannakoulas, J. Soulis, Y. Chatzizisis, T. Perdikides, N. Melas, et al. Predicting the risk of rupture of abdominal aortic aneurysms by utilizing various geometrical parameters: revisiting the diameter criterion. Angiology 57:487–494, 2006.

    Article  PubMed  CAS  Google Scholar 

  5. Greenhalgh, R. M., L. C. Brown, G. P. Kwong, J. T. Powell, and S. G. Thompson. Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality results: randomised controlled trial. Lancet 364:843–848, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Holt, P. J. E., J. D. Poloniecki, I. M. Loftus, J. A. Michaels, and M. M. Thompson. Epidemiological study of the relationship between volume and outcome after abdominal aortic aneurysm surgery in the UK from 2000 to 2005. Br. J. Surg. 94(4):441–448, 2007.

    Article  PubMed  CAS  Google Scholar 

  7. Kultangwattana, W., K. Somkantha, and P. Phuangsuwan. Diagnosis of the abdominal aorta aneurysm in magnetic resonance imaging images. World Acad. Sci. Eng. Technol. 53:648, 2009.

    Google Scholar 

  8. Lederle, F. A., S. E. Wilson, G. R. Johnson, D. B. Reinke, F. N. Littooy, et al. Immediate repair compared with surveillance of small abdominal aortic aneurysms. N. Engl. J. Med. 346:1437–1444, 2002.

    Article  PubMed  Google Scholar 

  9. Leung, J., R. D. Nyilas, S. M. L. Ng, and X. Y. Xu. Towards a new geometric approach to assess the risk of rupture of abdominal aortic aneurysms using patient specific modeling. In: Proceedings of the 2005 Summer Bioengineering Conference. Abstract SBC2005-I21.

  10. Limet, R., N. Sakalihasan, and A. Albert. Determination of the expansion rate and the incidence of rupture of abdominal aortic aneurysms. J. Vasc. Surg. 14:540–548, 1991.

    Article  PubMed  CAS  Google Scholar 

  11. Ma, B., R. E. Harbaugh, and M. L. Raghavan. Three-dimensional geometrical characterization of cerebral aneurysms. Ann. Biomed. Eng. 32:264–273, 2004.

    Article  PubMed  Google Scholar 

  12. Mark, H., F. Eibe, H. Geoffrey, P. Bernhard, R. Peter, and H. W. Ian. The WEKA data mining software: an update. SIGKDD Explor. 11(1):10–18, 2009.

    Article  Google Scholar 

  13. Martufi, G., E. S. Di Martino, C. H. Amon, S. C. Muluk, and E. A. Finol. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J. Biomech. Eng. 131(6):061015, 2009.

    Article  PubMed  Google Scholar 

  14. Nielsen, P. M. F., I. J. Le Grice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260:1365–1389, 1991.

    Google Scholar 

  15. Pappu, S., A. Dardik, H. Tagare, and R. J. Gusberg. Beyond fusiform and saccular: a novel quantitative tortuosity index may help classify aneurysm shape and predict aneurysm rupture potential. Ann. Vasc. Surg. 22:88–97, 2008.

    Article  PubMed  Google Scholar 

  16. Prakash, S., and C. R. Ethier. Requirements for mesh resolution in 3D computational hemodynamics. J. Biomech. Eng. 123(2):134–144, 2001.

    Article  PubMed  CAS  Google Scholar 

  17. Raghavan, M. L., B. Ma, and R. E. Harbaugh. Quantified aneurysm shape and rupture risk. J. Neurosurg. 102:355–362, 2005.

    Article  PubMed  Google Scholar 

  18. Sacks, M. S., C. J. Chuong, G. H. Templeton, and R. Peshock. In vivo 3-D reconstruction and geometric characterization of the right ventricular free wall. Ann. Biomed. Eng. 21:263–275, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Sacks, M. S., D. A. Vorp, M. L. Raghavan, M. P. Federle, and M. W. Webster. In vivo three-dimensional surface geometry of abdominal aortic aneurysms. Ann. Biomed. Eng. 27:469–479, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Sakalihasan, N., R. Limet, and O. D. Defawe. Abdominal aortic aneurysm. Lancet 365(9470):1577–1589, 2004.

    Article  Google Scholar 

  21. Sander, P. T., and S. W. Zucker. Inferring surfaces trace and differential structure from 3-D images. IEEE Trans. Pattern Anal. Mach. Intell. 12(9):833–854, 1990.

    Article  Google Scholar 

  22. Scott, R. A. P., H. A. Ashton, M. J. Buxton, N. E. Day, L. G. Kim, T. M. Marteau, S. G. Thomspon, N. M. Walker, and M. A. S. Stu. The Multicentre Aneurysm Screening Study (MASS) into the effect of abdominal aortic aneurysm screening on mortality in men: a randomised controlled trial. Lancet 360(9345):1531–1539, 2002.

    Article  PubMed  Google Scholar 

  23. Shum, J., E. S. Di Martino, A. Goldhammer, D. Goldman, L. Acker, G. Patel, G. Martufi, and E. A. Finol. Semi-automatic vessel wall detection and quantification of wall thickness in CT images of human abdominal aortic aneurysms. Med. Phys. 37:638–648, 2010.

    Article  PubMed  Google Scholar 

  24. Shum, J., G. Martufi, E. Di Martino, C. B. Washington, J. Grisafi, S. C. Muluk, and E. A. Finol. Quantitative assessment of abdominal aortic aneurysm geometry. Ann. Biomed. Eng. 39(1):277–286, 2011.

    Article  PubMed  Google Scholar 

  25. Smith, D. B., M. S. Sacks, D. A. Vorp, and M. Thornton. Surface geometric analysis of anatomic structures using biquintic finite element interpolation. Ann. Biomed. Eng. 28:598–611, 2000.

    Article  PubMed  CAS  Google Scholar 

  26. The UK Small Aneurysm Trial Participants. Mortality results for randomized controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet 352:1649–1655, 1998.

    Article  Google Scholar 

  27. Venkatasubramaniam, A. K., M. J. Fagan, T. Mehta, K. J. Mylankal, B. Ray, G. Kuhan, I. C. Chetter, and P. T. McCollum. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Surg. 28:168–176, 2004.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge research funding from the Korean Government Scholarship Program for Study Overseas, and the Vlahakis Graduate Fellowship program. This work was also funded in part by NIH grants R21EB007651, R21EB008804 and R15HL087268. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors would like to thank Drs. Michael Sacks and David Smith for their insightful discussions on the basics of the BQFE method and its implementation for surface curvature analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender A. Finol.

Additional information

Associate Editor Scott L. Diamond oversaw the review of this article.

Appendices

Appendix I: Definition of Global Curvature Features (i.e., Geometric Indices)

Area of a Triangular Element

$$ S_{i} = \frac{1}{2}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{a}_{i} \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{b}_{j} $$

where the final points of \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{a}_{i} \) and \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{b}_{j} \) share one edge of the triangle.

Gaussian and Mean Curvatures

The roots of Eqs. (3) and (8) are defined as the local (nodal) curvatures, \( k_{1i} \) and \( k_{2i}. \) The local Gaussian (K) and Mean (M) curvatures are given by

$$ K_{i} = k_{1i} \cdot k_{2i} $$
$$ M_{i} = \frac{1}{2}\left( {k_{1i} + k_{2i} } \right) $$

Global Curvature Indices (Calculation Described in Detail by Martufi et al. 13)

KG :

Square root sum of the Gaussian curvature

KM :

Square root sum of the Mean curvature

GAA :

Area averaged Gaussian curvature

MAA :

Area averaged Mean curvature

K1AA :

Area averaged major principal curvature

K2AA :

Area averaged minor principal curvature

GLN :

L2 norm of the Gaussian curvature

MLN :

L2 norm of the Mean curvature

K1LN :

L2 norm of the major principal curvature

K2LN :

L2 norm of the minor principal curvature

   

Appendix II: Brief Description of Curvature Estimation by BQFE Interpolation

A BQFE interpolation has C 2 continuity on the surface on which curvatures are probed by having the first and second derivatives defined at the surface nodes such that BQFE derived curvatures are more accurate than those computed with lower order continuity methods. To calculate curvatures directly from BQFE, we use Eq. (8) and the subsequent tensor products:

$$ \left( {g_{\theta \theta } g_{\theta z} - g_{\theta z}^{2} } \right)k_{n}^{2} - \left( {b_{\theta \theta } g_{zz} + g_{\theta \theta } b_{zz} - 2b_{\theta z} g_{\theta z} } \right)k_{n} + \left( {b_{\theta \theta } b_{zz} - b_{\theta z}^{2} } \right) = 0 $$
(8)

where \( b_{\alpha \beta } = \sqrt {g_{\theta \theta } g_{\theta z} - g_{\theta z}^{2} } \left| {\begin{array}{*{20}c} {X_{\alpha \beta } } & {Y_{\alpha \beta } } & {Z_{\alpha \beta } } \\ {X_{\theta } } & {Y_{\theta } } & {Z_{\theta } } \\ {X_{z} } & {Y_{z} } & {Z_{z} } \\ \end{array} } \right| \) and \( g_{\alpha \beta } = X_{\alpha } X_{\beta } + Y_{\alpha } Y_{\beta } + Z_{\alpha } Z_{\beta } . \)

The subscripts of X, Y, and Z represent differentiation with respect to that variable. Equations (9)–(11) demonstrate how the mathematical descriptors of the BQF elements and the corresponding Cartesian coordinates of the surfaces are related to each other:

$$ \begin{aligned} X &= R\cos \theta + \mathop \sum \limits_{k} a_{k} \cos (k\omega z) \hfill \\ Y &= R\sin \theta + \mathop \sum \limits_{j} b_{j} \sin (k\omega z) \hfill \\ Z &= z \hfill \\ \end{aligned} $$
(9)

where \( 2\omega \pi /\left( {Z_{\hbox{max} } + Z_{\hbox{min} } } \right) \), \( a_{k} \) and \( b_{j} \) are constants, and k and j are the number of terms in the Fourier series used to represent the longitudinal AAA axis. For example, the derivatives with respect to \( {{\uptheta}} \) and z in the X direction are given by

$$ \begin{gathered} X_{\theta } = \frac{\partial R}{\partial \theta }\cos \theta - R\sin \theta \hfill \\ X_{\theta \theta } = \frac{{\partial^{2} R}}{{\partial \theta^{2} }}\cos \theta - 2\frac{\partial R}{\partial \theta }\sin \theta - R\cos \theta \hfill \\ X_{\theta z} = \frac{{\partial^{2} R}}{\partial \theta \partial z}\cos \theta - \frac{\partial R}{\partial z}\sin \theta \hfill \\ X_{z} = \frac{\partial R}{\partial z}\cos \theta - \mathop \sum \limits_{k} \omega ka_{k} \sin (k\omega z) \hfill \\ X_{zz} = \frac{{\partial^{2} R}}{{\partial z^{2} }}\cos \theta - \mathop \sum \limits_{k} \omega^{2} k^{2} a_{k} \cos (k\omega z). \hfill \\ \end{gathered} $$
(10)

The radial coordinate R is the fitted variable and its derivatives are expressed in terms of the element shape functions N which are biquintic hermite shape functions:

$$ \begin{gathered} \frac{\partial R}{\partial \theta } = \frac{\partial \xi }{\partial \theta }\;\frac{{\partial N_{i}^{jk} }}{\partial \xi }R_{i}^{jk} \hfill \\ \frac{{\partial^{2} R}}{{\partial \theta^{2} }} = \left( {\frac{\partial \xi }{\partial \theta }} \right)^{2} \frac{{\partial^{2} N_{i}^{jk} }}{{\partial \xi^{2} }}R_{i}^{jk} \hfill \\ \frac{{\partial^{2} R}}{\partial \theta \partial z} = \frac{\partial \xi }{\partial \theta }\;\frac{\partial \eta }{\partial z}\;\frac{{\partial^{2} N_{i}^{jk} }}{\partial \xi \partial \eta }R_{i}^{jk} \hfill \\ \frac{\partial R}{\partial z} = \frac{\partial \eta }{\partial z}\;\frac{{\partial N_{i}^{jk} }}{\partial \eta }R_{i}^{jk} \hfill \\ \frac{{\partial^{2} R}}{{\partial z^{2} }} = \left( {\frac{\partial \eta }{\partial z}} \right)^{2} \frac{{\partial^{2} N_{i}^{jk} }}{{\partial \eta^{2} }}R_{i}^{jk} . \hfill \\ \end{gathered} $$
(11)

A more detailed calculation is presented by Smith et al.25

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Zhu, J., Shum, J. et al. Surface Curvature as a Classifier of Abdominal Aortic Aneurysms: A Comparative Analysis. Ann Biomed Eng 41, 562–576 (2013). https://doi.org/10.1007/s10439-012-0691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0691-4

Keywords

Navigation