Skip to main content
Log in

Wall Stress and Geometry Measures in Electively Repaired Abdominal Aortic Aneurysms

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Abdominal aortic aneurysm (AAA) is a vascular disease characterized by the enlargement of the infrarenal segment of the aorta. A ruptured AAA can cause internal bleeding and carries a high mortality rate, which is why the clinical management of the disease is focused on preventing aneurysm rupture. AAA rupture risk is estimated by the change in maximum diameter over time (i.e., growth rate) or if the diameter reaches a prescribed threshold. The latter is typically 5.5 cm in most clinical centers, at which time surgical intervention is recommended. While a size-based criterion is suitable for most patients who are diagnosed at an early stage of the disease, it is well known that some small AAA rupture or patients become symptomatic prior to a maximum diameter of 5.5 cm. Consequently, the mechanical stress in the aortic wall can also be used as an integral component of a biomechanics-based rupture risk assessment strategy. In this work, we seek to identify geometric characteristics that correlate strongly with wall stress using a sample space of 100 asymptomatic, unruptured, electively repaired AAA models. The segmentation of the clinical images, volume meshing, and quantification of up to 45 geometric measures of each AAA were done using in-house Matlab scripts. Finite element analysis was performed to compute the first principal stress distributions from which three global biomechanical parameters were calculated: peak wall stress, 99th percentile wall stress and spatially averaged wall stress. Following a feature reduction approach consisting of Pearson’s correlation matrices with Bonferroni correction and linear regressions, a multivariate stepwise regression analysis was conducted to find the geometric measures most highly correlated with each of the biomechanical parameters. Our findings indicate that wall stress can be predicted by geometric indices with an accuracy of up to 94% when AAA models are generated with uniform wall thickness and up to 67% for patient specific, non-uniform wall thickness AAA. These geometric predictors of wall stress could be used in lieu of complex finite element models as part of a geometry-based protocol for rupture risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aggarwal, S., A. Qamar, V. Sharma, and A. Sharma. Abdominal aortic aneurysm: a comprehensive review. Exp. Clin. Cardiol. 16:11–15, 2011.

    PubMed  PubMed Central  Google Scholar 

  2. Beller, C. J., M. M. Gebhard, M. Karck, and M. R. Labrosse. Usefulness and limitations of computational models in aortic disease risk stratification. J. Vasc. Surg. 52:1572–1579, 2010.

    Article  PubMed  Google Scholar 

  3. Brown, P. M., D. T. Zelt, and B. Sobolev. The risk of rupture in untreated aneurysms: the impact of size, gender, and expansion rate. J. Vasc. Surg. 37:280–284, 2003.

    Article  PubMed  Google Scholar 

  4. Centers for Disease Control and Prevention (USA). Aortic Aneurysm Fact Sheet. https://www.cdc.gov/dhdsp/data_statistics/fact_sheets/fs_aortic_aneurysm.htm. 2014.

  5. Chauhan, S. S., C. A. Gutierrez, M. Thirugnanasambandam, V. De Oliveira, S. C. Muluk, M. K. Eskandari, and E. A. Finol. The association between geometry and wall stress in emergently repaired abdominal aortic aneurysms. Ann. Biomed. Eng. 45:1908–1916, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Darling, R., C. Messina, D. Brewster, and L. Ottinger. Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulaltion 56:161–164, 1977.

    Google Scholar 

  7. Fillinger, M. F., M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36:589–597, 2002.

    Article  PubMed  Google Scholar 

  8. Georgakarakos, E., C. V. Ioannou, Y. Kamarianakis, Y. Papaharilaou, T. Kostas, E. Manousaki, and A. N. Katsamouris. The role of geometric parameters in the prediction of abdominal aortic aneurysm wall stress. Eur. J. Vasc. Endovasc. Surg. 39:42–48, 2010.

    Article  CAS  PubMed  Google Scholar 

  9. Giannoglou, G., G. Giannakoulas, J. Soulis, Y. Chatzizisis, T. Perdikides, N. Melas, G. Parcharidis, and G. Louridas. Predicting the risk of rupture of abdominal aortic aneurysms by utilizing various geometrical parameters: revisiting the diameter criterion. Angiology 57:487–494, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Joldes, G. R., K. Miller, A. Wittek, and B. Doyle. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress. J. Mech. Behav. Biomed. Mater. 58:139–148, 2016.

    Article  PubMed  Google Scholar 

  11. Joldes, G. R., K. Miller, A. Wittek, R. O. Forsythe, D. E. Newby, and B. J. Doyle. BioPARR: a software system for estimating the rupture potential index for abdominal aortic aneurysms. Sci. Rep. 7:4641, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khosla, S., D. R. Morris, J. V. Moxon, P. J. Walker, T. C. Gasser, and J. Golledge. Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. Br. J. Surg. 101:1350–1357, 2014.

    Article  CAS  PubMed  Google Scholar 

  13. Larsson, E., F. Labruto, T. C. Gasser, J. Swedenborg, and R. Hultgren. Analysis of aortic wall stress and rupture risk in patients with abdominal aortic aneurysm with a gender perspective. J. Vasc. Surg. 54:295–299, 2011.

    Article  PubMed  Google Scholar 

  14. Lederle, F. A., G. R. Johnson, S. E. Wilson, D. J. Ballard, W. D. Jordan, Jr, J. Blebea, F. N. Littooy, J. A. Freischlag, D. Bandyk, J. H. Rapp, and A. A. Salam. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. Jama 287:2968–2972, 2002.

    Article  PubMed  Google Scholar 

  15. Lee, K., J. J. Zhu, J. Shum, Y. J. Zhang, S. C. Muluk, A. Chandra, M. K. Eskandari, and E. A. Finol. Surface curvature as a classifier of abdominal aortic aneurysms: a comparative analysis. Ann. Biomed. Eng. 41:562–576, 2013.

    Article  PubMed  Google Scholar 

  16. Liljeqvist, M. L., R. Hultgren, T. C. Gasser, and J. Roy. Volume growth of abdominal aortic aneurysms correlates with baseline volume and increasing finite element analysis-derived rupture risk. J. Vasc. Surg. 63:1434–1442, 2016.

    Article  Google Scholar 

  17. Maier, A., M. Gee, C. Reeps, J. Pongratz, H.-H. Eckstein, and W. Wall. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38:3124–3134, 2010.

    Article  CAS  PubMed  Google Scholar 

  18. Martufi, G., E. S. Di Martino, C. H. Amon, S. C. Muluk, and E. A. Finol. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J. Biomech. Eng. 131:061015, 2009.

    Article  PubMed  Google Scholar 

  19. Pérez, E. A., L. R. Rojas-Solórzano, and E. Finol. Geometric predictors of abdominal aortic aneurysm maximum wall stress. Chem. Eng. Trans. 49:73–78, 2016.

    PubMed  PubMed Central  Google Scholar 

  20. Polzer, S., and T. C. Gasser. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index. J. R. Soc. Interface 12:20150852, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raghavan, M. L., J. Kratzberg, E. M. C. de Tolosa, M. M. Hanaoka, P. Walker, and E. S. da Silva. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39:3010–3016, 2006.

    Article  PubMed  Google Scholar 

  22. Raghavan, M. L., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33:475–482, 2000.

    Article  CAS  PubMed  Google Scholar 

  23. Raut, S. S. Patient-specific 3D vascular reconstruction and computational assessment of biomechanics—an application to abdominal aortic aneurysm. Ph.D. Thesis. Carnegie Mellon University, 2012.

  24. Sacks, M. S., D. A. Vorp, M. L. Raghavan, M. P. Federle, and M. W. Webster. In vivo three-dimensional surface geometry of abdominal aortic aneurysms. Ann. Biomed. Eng. 27:469–479, 1999.

    Article  CAS  PubMed  Google Scholar 

  25. Shaffer, J. P. Multiple hypothesis-testing. Annu. Rev. Psychol. 46:561–584, 1995.

    Article  Google Scholar 

  26. Shum, J. Risk assessment of abdominal aortic aneurysms by geometry quantification measures. Ph.D. Thesis. Carnegie Mellon University, 2011.

  27. Shum, J., E. S. DiMartino, A. Goldhammer, D. H. Goldman, L. C. Acker, G. Patel, J. H. Ng, G. Martufi, and E. A. Finol. Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med. Phys. 37:638–648, 2010.

    Article  PubMed  Google Scholar 

  28. Shum, J., G. Martufi, E. Di Martino, C. B. Washington, J. Grisafi, S. C. Muluk, and E. A. Finol. Quantitative assessment of abdominal aortic aneurysm geometry. Ann. Biomed. Eng. 39:277–286, 2011.

    Article  PubMed  Google Scholar 

  29. Shum, J., A. Xu, I. Chatnuntawech, and E. A. Finol. A framework for the automatic generation of surface topologies for abdominal aortic aneurysm models. Ann. Biomed. Eng. 39:249–259, 2011.

    Article  PubMed  Google Scholar 

  30. Speelman, L., E. M. H. Bosboom, G. W. H. Schurink, F. Hellenthal, J. Buth, M. Breeuwer, M. J. Jacobs, and F. N. van de Vosse. Patient-specific AAA wall stress analysis: 99-percentile versus peak stress. Eur. J. Vasc. Endovasc. Surg. 36:668–676, 2008.

    Article  CAS  PubMed  Google Scholar 

  31. Tang, A., C. Kauffmann, S. Tremblay-Paquet, S. Elkouri, O. Steinmetz, F. Morin-Roy, L. Cloutier-Gill, and G. Soulez. Morphologic evaluation of ruptured and symptomatic abdominal aortic aneurysm by three-dimensional modeling. J. Vasc. Surg. 59:894–902, 2014.

    Article  CAS  PubMed  Google Scholar 

  32. Woolson, R. F., and W. R. Clarke. Statistical Methods for the Analysis of Biomedical Data. Hoboken: Wiley, 2002.

    Book  Google Scholar 

  33. Xenos, M., S. H. Rambhia, Y. Alemu, S. Einav, N. Labropoulos, A. Tassiopoulos, J. J. Ricotta, and D. Bluestein. Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Ann. Biomed. Eng. 38:3323–3337, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors have no conflicts of interest to disclose and would like to acknowledge research funding from National Institutes of Health award R01HL121293. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The use of ANSYS Ensight is gratefully acknowledged through an educational licensing agreement with Ansys, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender A. Finol.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Rengarajan, B., Thirugnanasambandam, M. et al. Wall Stress and Geometry Measures in Electively Repaired Abdominal Aortic Aneurysms. Ann Biomed Eng 47, 1611–1625 (2019). https://doi.org/10.1007/s10439-019-02261-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02261-w

Keywords

Navigation