Skip to main content

Advertisement

Log in

ImmunoPET Imaging of αvβ6 Expression Using an Engineered Anti-αvβ6 Cys-diabody Site-Specifically Radiolabeled with Cu-64: Considerations for Optimal Imaging with Antibody Fragments

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Increased expression of the αvβ6 integrin correlates with advanced tumor grade and poor clinical outcome, identifying αvβ6 as a prognostic indicator and an attractive target for molecular imaging. This work investigated the ability of a disulfide-stabilized [64Cu]NOTA-αvβ6 cys-diabody to image αvβ6 expression in vivo using a nu/nu mouse model bearing human melanoma xenografts and positron-emission tomography.

Procedures

Small-animal positron emission tomography (PET) imaging, quantitative ROI analysis, and ex vivo biodistribution were conducted to ascertain tumor uptake and organ distribution of the [64Cu]NOTA-αvβ6 cys-diabody. Immunohistochemical staining of tumors and mouse organs and immunoreactivity assays were utilized to correlate in vivo and ex vivo observations.

Results

PET imaging of the [64Cu]NOTA-αvβ6 cys-diabody revealed low tumor uptake at 24 h p.i. in DX3Puroβ6 tumors (2.69 ± 0.45 %ID/g) with comparable results found in the DX3Puro tumors (2.24 ± 0.15 %ID/g). Quantitative biodistribution confirmed that DX3Puroβ6 tumor uptake was highest at 24 h p.i. (4.63 ± 0.18 %ID/g); however, uptake was also observed in the stomach (4.84 ± 2.99 %ID/g), small intestines (4.50 ± 1.69 %ID/g), large intestines (4.73 ± 0.97 %ID/g), gallbladder (6.04 ± 1.88 %ID/g), and lungs (3.89 ± 0.69 %ID/g).

Conclusions

Small-animal PET imaging was successful in visualizing αvβ6-positive tumor uptake of the [64Cu]NOTA-αvβ6 cys-diabody. Cys-diabody cross-reactivity was observed between human and murine αvβ6 and immunohistochemical staining confirmed the presence of an endogenous αvβ6 antigen sink, which led to suboptimal tumor contrast in this mouse model. Future investigations will focus on dose escalation studies to overcome the endogenous antigen sink while increasing DX3Puroβ6 tumor uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Bird RE, Hardman KD, Jacobson JW et al (1988) Single-chain antigen-binding proteins. Science 242:423–426

    Article  CAS  PubMed  Google Scholar 

  2. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136

    Article  CAS  PubMed  Google Scholar 

  3. Nayak TK, Brechbiel MW (2009) Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug Chem 20:825–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holliger P, Prospero T, Winter G (1993) “Diabodies”: small bivalent and bispecific antibody fragments. Proc Nat Acad Sci 90:6444–6448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Atwell JL, Breheney KA, Lawrence LJ, McCoy AJ, Kortt AA, Hudson PJ (1999) scFv multimers of the anti-neuraminidase antibody NC10: length of the linker between VH and VL domains dictates precisely the transition between diabodies and triabodies. Prot Eng 12:597–604

    Article  CAS  Google Scholar 

  6. Kortt AA, Dolezal O, Power BE, Hudson PJ (2001) Dimeric and trimeric antibodies: high avidity scFvs for cancer targeting. Biomol Eng 18:95–108

    Article  CAS  PubMed  Google Scholar 

  7. Todorovska A, Roovers RC, Dolezal O, Kortt AA, Hoogenboom HR, Hudson PJ (2001) Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J Immun Methods 248:47–66

    Article  CAS  Google Scholar 

  8. Olafsen T, Cheung CW, Yazaki PJ et al (2004) Covalent disulfide-linked anti-CEA diabody allows site-specific conjugation and radiolabeling for tumor targeting applications. Protein Eng Des Sel 17:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Olafsen T, Sirk SJ, Olma S, Shen CKF, Wu AM (2012) ImmunoPET using engineered antibody fragments: fluorine-18 labeled diabodies for same-day imaging. Tumor Biol 33:669–677

    Article  CAS  Google Scholar 

  10. Viola-Villegas NT, Sevak KK, Carlin SD et al (2014) Noninvasive imaging of PSMA in prostate tumors with 89Zr-labeled huJ591 engineered antibody fragments: the faster alternatives. Mol Pharm 11:3965–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Girgis MD, Kenanova V, Olafsen T, McCabe KE, Wu AM, Tomlinson JS (2011) Anti-CA19-9 diabody as a PET imaging probe for pancreas cancer. J Surg Res 170:169–178

    Article  CAS  PubMed  Google Scholar 

  12. Leyton JV, Olafsen T, Sherman MA et al (2009) Engineered humanized diabodies for microPET imaging of prostate stem cell antigen-expressing tumors. Protein Eng Des Sel 22:209–216

    Article  CAS  PubMed  Google Scholar 

  13. Cai W, Olafsen T, Zhang X et al (2007) PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med 48:304–310

    Article  CAS  PubMed  Google Scholar 

  14. Ramos DM, But M, Regezi J et al (2002) Expression of integrin β6 enhances invasive behavior in oral squamous cell carcinoma. Matrix Biol 21:297–307

    Article  CAS  PubMed  Google Scholar 

  15. Sipos B, Hahn D, Carceller A et al (2004) Immunohistochemical screening for beta(6)-integrin subunit expression in adenocarcinomas using a novel monoclonal antibody reveals strong up-regulation in pancreatic ductal adenocarcinomas in vivo and in vitro. Histopathology 45:226–236

    Article  CAS  PubMed  Google Scholar 

  16. Ahmed N, Riley C, Rice GE, Quinn MA, Baker MS (2002) αvβ6 integrin-A marker for the malignant potential of epithelial ovarian cancer. J Histochem Cytochem 50:1371–1380

    Article  CAS  PubMed  Google Scholar 

  17. Hazelbag S, Kenter G, Gorter A et al (2007) Overexpression of the αvβ6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J Pathol 212:316–324

    Article  CAS  PubMed  Google Scholar 

  18. Thomas GJ, Nystrom ML, Marshall JF (2006) αvβ6 integrin in wound healing and cancer of the oral cavity. J Oral Pathol Med 35:1–10

    Article  CAS  PubMed  Google Scholar 

  19. Logan D, Abughazaleh R, Blakemore W et al (1993) Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 362:566–568

    Article  CAS  PubMed  Google Scholar 

  20. Hausner SH, DiCara D, Marik J et al (2007) Use of a peptide derived from foot-and-mouth disease virus for the noninvasive imaging of human cancer: generation and evaluation of 4-[18F]Fluorobenzoyl A20FMDV2 for in vivo imaging of integrin αvβ6 expression with positron emission tomography. Cancer Res 67:7833–7840

    Article  CAS  PubMed  Google Scholar 

  21. Hausner SH, Abbey CK, Bold RJ et al (2009) Targeted in vivo imaging of integrin alpha(v)beta(6) with an improved radiotracer and its relevance in a pancreatic tumor model. Cancer Res 69:5843–5850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hausner SH, Bauer N, Hu LY et al (2015) The effect of bi-terminal PEGylation of an integrin αvβ6-targeted 18F-peptide on pharmacokinetics and tumor uptake. J Nucl Med 56:784–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elayadi AN, Samli KN, Prudkin L et al (2007) A peptide selected by biopanning identifies the integrin αvβ6 as a prognostic biomarker for non-small cell lung cancer. Cancer Res 67:5889–5895

    Article  CAS  PubMed  Google Scholar 

  24. Singh AN, McGuire MJ, Li S et al (2014) Dimerization of a phage-display selected peptide for imaging of αvβ6 integrin: two approaches to the multivalent effect. Theranostics 4:745–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kogelberg H, Tolner B, Thomas GJ et al (2008) Engineering a single chain Fv antibody to αvβ6 integrin using the specificity-determining loop of a foot-and-mouth disease virus. J Mol Biol 382:385–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kogelberg H, Miranda E, Burnet J et al (2013) Generation and characterization of a diabody targeting the alpha(v)beta(6) integrin. PLoS One 8:1–9

    Article  Google Scholar 

  27. White JB, Boucher DL, Zettlitz KA et al (2015) Development and characterization of an αvβ6-specific diabody and a disulfide-stabilized αvβ6-specific cys-diabody. Nucl Med Biol 42:945–957

    Article  CAS  PubMed  Google Scholar 

  28. Wu AM (2009) Antibodies and antimatter: the resurgence of immuno-PET. J Nucl Med 50:2–5

    Article  CAS  PubMed  Google Scholar 

  29. Wu AM (2014) Engineered antibodies for molecular imaging of cancer. Methods 65:139–147

    Article  CAS  PubMed  Google Scholar 

  30. Hudson PJ, Souriau C (2003) Engineered antibodies. Nat Med 9:129–134

    Article  CAS  PubMed  Google Scholar 

  31. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotech 23:1137–1146

    Article  CAS  Google Scholar 

  32. Olafsen T, Kenanova VE, Sundaresan G et al (2005) Optimizing radiolabeled engineered anti-p185(HER2) antibody fragments for in vivo imaging. Cancer Res 65:5907–5916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McCabe KE, Liu B, Marks JD et al (2012) An engineered cysteine-modified diabody for imaging activated leukocyte cell adhesion molecule (ALCAM)-positive tumors. Mol Imaging Biol 14:336–347

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tavaré R, Wu WH, Zettlitz KA et al (2014) Enhanced immunoPET of ALCAM-positive colorectal carcinoma using site-specific 64Cu-DOTA conjugation. Protein Eng Des Sel 27:317–324

    Article  PubMed  PubMed Central  Google Scholar 

  35. Weinreb PH, Simon KJ, Rayhorn P et al (2004) Function-blocking integrin αvβ6 monoclonal antibodies - distinct ligand-mimetic and nonligand-mimetic classes. J Biol Chem 279:17875–17887

    Article  CAS  PubMed  Google Scholar 

  36. Arend LJ, Smart AM, Briggs JP (2000) Mouse β6 integrin sequence, pattern of expression, and role in kidney development. J Am Soc Nephrol 11:2297–2305

    CAS  PubMed  Google Scholar 

  37. Tahtis K, Lee F-T, Smyth FE et al (2001) Biodistribution properties of 111Indium-labeled c-functionalized trans-cyclohexyl diethylenetriaminepentaacetic acid humanized 3S193 diabody and F(ab′)2 constructs in a breast carcinoma xenograft model. Clin Cancer Res 7:1061–1072

    CAS  PubMed  Google Scholar 

  38. Bumbaca D, Xiang H, Boswell CA et al (2012) Maximizing tumour exposure to anti-neuropilin-1 antibody requires saturation of non-tumour tissue antigenic sinks in mice. Br J Pharmacol 166:368–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boswell CA, Mundo EE, Zhang C et al (2012) Differential effects of predosing on tumor and tissue uptake of an 111In-labeled anti-TENB2 antibody–drug conjugate. J Nucl Med 53:1454–1461

    Article  CAS  PubMed  Google Scholar 

  40. Carrasquillo JA, Abrams PG, Schroff RW et al (1988) Effect of antibody dose on the imaging and biodistribution of indium-111 9.2.27 anti-melanoma monoclonal antibody. J Nucl Med 29:39–47

    CAS  PubMed  Google Scholar 

  41. Carrasquillo JA, Pandit-Taskar N, O'Donoghue JA et al (2011) 124I-huA33 antibody PET of colorectal cancer. J Nucl Med 52:1173–1180

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dijkers EC, Oude Munnink TH, Kosterink JG et al (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87:586–592

    Article  CAS  PubMed  Google Scholar 

  43. Dijkers ECF, Kosterink JGW, Rademaker AP et al (2009) Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J Nucl Med 50:974–981

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the staff at CMGI, including Dave Kukis, Jennifer Fung, and Charles Smith, for their assistance with radioisotope procurement and animal handling during the PET imaging studies. Also, a special thanks to Dr. Anna Wu and Dr. Kirstin Zettlitz at the Crump Institute for Molecular Imaging, UCLA, for many fruitful discussions and analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie L. Sutcliffe.

Ethics declarations

All animal handling and procedures were performed using protocols approved by the UC Davis Institutional Animal Care and Use Committee.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, J.B., Hu, L.Y., Boucher, D.L. et al. ImmunoPET Imaging of αvβ6 Expression Using an Engineered Anti-αvβ6 Cys-diabody Site-Specifically Radiolabeled with Cu-64: Considerations for Optimal Imaging with Antibody Fragments. Mol Imaging Biol 20, 103–113 (2018). https://doi.org/10.1007/s11307-017-1097-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1097-3

Key words

Navigation