Skip to main content

Advertisement

Log in

Evaluation of a Flexible NOTA-RGD Kit Solution Using Gallium-68 from Different 68Ge/68Ga-Generators: Pharmacokinetics and Biodistribution in Nonhuman Primates and Demonstration of Solitary Pulmonary Nodule Imaging in Humans

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Radiopharmaceuticals containing the motive tripeptide arginyl-glycyl-asparatic acid (RGD) are known to target ανβ3 integrins during tumor angiogenesis. A more generic kit radiolabeling procedure accommodating Ga-68 from different generators was developed for NOTA-RGD and evaluated for its versatile use and safety in subsequent in vivo applications. The [68Ga]NOTA-RGD kit was further verified for its expected biodistribution and pharmacokinetics in nonhuman primates and its clinical sensitivity to detect solitary pulmonary nodules (SPN) in cancer patients.

Procedures

Single vial kits containing 28–56 nmol of NOTA-cyclo-Arg-Gly-Asp-d-Tyr-Lys (NOTA-RGD) and sodium acetate trihydrate buffer were formulated. Versatility of the NOTA-RGD radiolabeling performance and adaption to a TiO2- and a SnO2-based generator type, characterization and long-term storage stability of the kits were carried out. The blood clearance and urine recovery kinetics as well as the image-guided biodistribution of [68Ga]NOTA-RGD was studied in a vervet monkey model. [68Ga]NOTA-RGD kits were further tested clinically to target solitary pulmonary nodules.

Results

The kits could be successfully formulated warranting integrity over 3–4 months with a good [68Ga]NOTA-RGD radiolabeling performance (radiochemical purity >95 %, decay corrected yield 76–94 %, specific activity of 8.8–37.9 GBq/μmol) The kits met all quality requirements to be further tested in vivo. [68Ga]NOTA-RGD cleared rapidly from blood and was majorly excreted via the renal route. The liver, spleen, heart and intestines showed initial uptake with steadily declining tissue activity concentration over time. In addition, the [68Ga]NOTA-RGD kit allowed for delineation of SPN from non-malignant lung tissue in humans.

Conclusions

A more versatile radiolabeling procedure using kit-formulated NOTA-RGD and different generator types was achieved. The uncompromised in vivo behavior and efficient targeting of SPN warrants further investigations on the clinical relevance of [68Ga]NOTA-RGD derivatives to implement initial guidelines and management of patients, with regard to integrin targeted imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Malvezzi M, Bertuccio P, Levi F et al (2013) European cancer mortality predictions for the year 2013. Ann Oncol 24:792–800

    Article  CAS  PubMed  Google Scholar 

  2. Parkin DM, Stjernsward J, Muir CS (1984) Estimates of the worldwide frequency of twelve major cancers. Bull World Health Organ 62:163–182

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferlay J, Shin HR, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Intl J Cancer 127:2893–2917

    Article  CAS  Google Scholar 

  4. Sathekge M, Buscombe JR (2011) Can positron emission tomography work in the African tuberculosis epidemic? Nucl Med Commun 32:241–244

    Article  PubMed  Google Scholar 

  5. Pakkala S, Ramalingam SS (2010) Lung cancer in HIV-positive patients. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 5:1864–1871

    Article  Google Scholar 

  6. Mbulaiteye SM, Parkin DM, Rabkin CS (2003) Epidemiology of AIDS-related malignancies an international perspective. Hematol Oncol Clin N Am 17:673–696 v

    Article  Google Scholar 

  7. Xanthopoulos EP, Corradetti MN, Mitra N et al (2013) Impact of PET staging in limited-stage small-cell lung cancer. J thoracic. Oncologia 8:899–905

    Google Scholar 

  8. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571

    Article  CAS  PubMed  Google Scholar 

  9. Beer AJ, Lorenzen S, Metz S et al (2008) Comparison of integrin alphaVbeta3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J Nucl Med 49:22–29

    Article  PubMed  Google Scholar 

  10. (2008) The Role of PET/CT in Radiation Treatment Planning for Cancer Patient Treatment. In IAEA Report. International Atomic Energy Agency: Nuclear Medicine Section, p 22

  11. D'Souza SE, Ginsberg MH, Plow EF (1991) Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem Sci 16:246–250

    Article  PubMed  Google Scholar 

  12. Conti L, Lanzardo S, Iezzi M et al (2013) Optical imaging detection of microscopic mammary cancer in ErbB-2 transgenic mice through the DA364 probe binding alphav beta3 integrins. Contrast Media Mol imaging 8:350–360

    Article  CAS  PubMed  Google Scholar 

  13. Carman CV (2012) Overview: imaging in the study of integrins. Methods Mol Biol 757:159–189

    Article  PubMed  Google Scholar 

  14. Cai W, Niu G, Chen X (2008) Imaging of integrins as biomarkers for tumor angiogenesis. Current Pharmaceut Design 14:2943–2973

    Article  CAS  Google Scholar 

  15. Meyer A, Auernheimer J, Modlinger A, Kessler H (2006) Targeting RGD recognizing integrins: drug development, biomaterial research, tumor imaging and targeting. Current Pharmaceut Design 12:2723–2747

    Article  CAS  Google Scholar 

  16. Wu Y, Cai W, Chen X (2006) Near-infrared fluorescence imaging of tumor integrin alpha v beta 3 expression with Cy7-labeled RGD multimers. Mol Imaging Biol 8:226–236

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mathejczyk JE, Pauli J, Dullin C et al (2011) Spectroscopically well-characterized RGD optical probe as a prerequisite for lifetime-gated tumor imaging. Mol Imaging 10:469–480

    CAS  PubMed  Google Scholar 

  18. Lee J, Lee TS, Ryu J et al (2013) RGD peptide-conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. J Nucl Med 54:96–103

    Article  CAS  PubMed  Google Scholar 

  19. Chen X, Sievers E, Hou Y et al (2005) Integrin alpha v beta 3-targeted imaging of lung cancer. Neoplasia 7:271–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mondal G, Barui S, Chaudhuri A (2013) The relationship between the cyclic-RGDfK ligand and alphavbeta3 integrin receptor. Biomaterials 34:6249–6260

    Article  CAS  PubMed  Google Scholar 

  21. Haubner R, Wester HJ (2004) Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Current Pharmaceut Design 10:1439–1455

    Article  CAS  Google Scholar 

  22. Liu Z, Niu G, Shi J et al (2009) 68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin alphavbeta3 PET imaging. Eur J Nucl Med Mol Imaging 36:947–957

    Article  CAS  PubMed  Google Scholar 

  23. van Hagen PM, Breeman WA, Bernard HF et al (2000) Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. Intl J Cancer 90:186–198

    Article  Google Scholar 

  24. Muhlhausen U, Komljenovic D, Bretschi M et al (2011) A novel PET tracer for the imaging of alphavbeta3 and alphavbeta5 integrins in experimental breast cancer bone metastases. Contrast Media Mol Imaging 6:413–420

    Article  PubMed  Google Scholar 

  25. Jeong JM, Hong MK, Chang YS et al (2008) Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med 49:830–836

    Article  CAS  PubMed  Google Scholar 

  26. Oxboel J, Schjoeth-Eskesen C, El-Ali HH et al (2012) (64)Cu-NODAGA-c(RGDyK) is a promising new angiogenesis PET tracer: correlation between tumor uptake and integrin alpha(V)beta(3) expression in human neuroendocrine tumor xenografts. Intl J. Mol Imaging 2012:379807

    Google Scholar 

  27. Notni J, Pohle K, Wester HJ (2013) Be spoilt for choice with radiolabelled RGD peptides: preclinical evaluation of 68Ga-TRAP(RGD)(3. Nucl Med Biol 40:33–41

    Article  CAS  PubMed  Google Scholar 

  28. Chen H, Niu G, Wu H, Chen X (2016) Clinical application of radiolabeled RGD peptides for PET imaging of integrin alphavbeta3. Theranostics 6:78–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brechbiel MW (2008) Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging 52:166–173

    CAS  PubMed  Google Scholar 

  30. Jamous M, Haberkorn U, Mier W (2013) Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. Molecules 18:3379–3409

    Article  CAS  PubMed  Google Scholar 

  31. Decristoforo C (2012) Gallium-68 -- a new opportunity for PET available from a long shelf-life generator - automation and applications. Curr Radiopharmaceut 5:212–220

    Article  CAS  Google Scholar 

  32. Sathekge MM, Maes A, Pottel H et al (2010) Dual time-point FDG PET-CT for differentiating benign from malignant solitary pulmonary nodules in a TB endemic area. S Afr Med J 100:598–601

    Article  PubMed  Google Scholar 

  33. Rossouw DD, Breeman WA (2012) Scaled-up radiolabelling of DOTATATE with 68Ga eluted from a SnO2-based 68Ge/68Ga generator. Appl Radiat Isot 70:171–175

    Article  CAS  PubMed  Google Scholar 

  34. Breeman WA, de Jong M, de Blois E et al (2005) Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging 32:478–485

    Article  CAS  PubMed  Google Scholar 

  35. Ebenhan T, Schoeman I, Roussow N et al (2014) Qualification of in-house prepared 68Ga-NOTA-RGD kit in mice and monkeys for subsequent molecular imaging of αvβ3 integrin expression in cancer patients. Intl J Nucl Med Mol Imaging 2014:P23

    Google Scholar 

  36. Orunmuyi A, Modiselle M, Lengana T, et al. (2016) 68Gallium-Arginine-Glycine-Aspartic Acid and 18F–Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Chondroblastic Osteosarcoma of the Skull. Nucl Med Mol Imaging [in press]

  37. Wangler C, Wangler B, Lehner S et al (2011) A universally applicable 68Ga-labeling technique for proteins. J Nucl Med 52:586–591

    Article  CAS  PubMed  Google Scholar 

  38. Vorster M, Mokaleng B, Sathekge MM, Ebenhan T (2013) A modified technique for efficient radiolabeling of 68Ga-citrate from a SnO2-based 68Ge/68Ga generator for better infection imaging. Hellenic. J Nucl Med 16:193–198

    Google Scholar 

  39. Ebenhan T, Vorster M, Marjanovic-Painter B et al (2015) Development of a single vial kit solution for radiolabeling of 68Ga-DKFZ-PSMA-11 and its performance in prostate cancer patients. Molecules 20:14860–14878

    Article  CAS  PubMed  Google Scholar 

  40. Liu S, Liu H, Jiang H et al (2011) One-step radiosynthesis of 18F-AlF-NOTA-RGD(2) for tumor angiogenesis PET imaging. Eur J Nucl Med Mol Imaging 38:1732–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu Z, Li Y, Lozada J et al (2013) Kit-like 18F-labeling of RGD-19F-arytrifluroborate in high yield and at extraordinarily high specific activity with preliminary in vivo tumor imaging. Nucl Med Biol 40:841–849

    Article  CAS  PubMed  Google Scholar 

  42. Wan W, Guo N, Pan D et al (2013) First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med 54:691–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fani M, Andre JP, Maecke HR (2008) 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging 3:67–77

    Article  PubMed  Google Scholar 

  44. de Blois E, Sze Chan H, Naidoo C et al (2011) Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides. Appl Radiat Isot 69:308–315

    Article  PubMed  Google Scholar 

  45. Chakravarty R, Chakraborty S, Dash A, Pillai MR (2012) Detailed evaluation on the effect of metal ion impurities on complexation of generator eluted 68Ga with different bifunctional chelators. Nucl Med Biol 40:197–205

    Article  PubMed  Google Scholar 

  46. Velikyan I (2013) Prospective of (68)Ga-radiopharmaceutical development. Theranostics 4:47–80

    Article  PubMed  PubMed Central  Google Scholar 

  47. Velikyan I (2015) Continued rapid growth in 68Ga applications: update 2013 to June 2014. J Label Comp Radiopharmaceut 58:99–121

    Article  CAS  Google Scholar 

  48. Velikyan I, Maecke H, Langstrom B (2008) Convenient preparation of 68Ga-based PET-radiopharmaceuticals at room temperature. Bioconjug Chem 19:569–573

    Article  CAS  PubMed  Google Scholar 

  49. Moore DAF, Fanwick PE, Welch MJ (1990) A novel hexachelating amino-thiol ligand and its complex with gallium(III. Inorg Chem 29:672–676

    Article  CAS  Google Scholar 

  50. Zhernosekov KP, Filosofov DV, Baum RP et al (2007) Processing of generator-produced 68Ga for medical application. J Nucl Med 48:1741–1748

    Article  CAS  PubMed  Google Scholar 

  51. Loktionova NS, Belozub AN, Filosofov DV et al (2011) Improved column-based radiochemical processing of the generator produced 68Ga. Appl Radiat Isot 69:942–946

    Article  CAS  PubMed  Google Scholar 

  52. Asti M, De Pietri G, Fraternali A et al (2008) Validation of 68Ge/68Ga generator processing by chemical purification for routine clinical application of (68)Ga-DOTATOC. Nucl Med Biol 35:721–724

    Article  CAS  PubMed  Google Scholar 

  53. Meyer GJ, Macke H, Schuhmacher J et al (2004) 68Ga-labelled DOTA-derivatised peptide ligands. Eur J Nucl Med Mol Imaging 31:1097–1104

    Article  CAS  PubMed  Google Scholar 

  54. Kim JH, Lee JS, Kang KW et al (2012) Whole-body distribution and radiation dosimetry of 68Ga-NOTA-RGD, a positron emission tomography agent for angiogenesis imaging. Cancer Biother Radiopharmaceut 27:65–71

    Article  CAS  Google Scholar 

  55. Ebenhan T, Govender T, Kruger G et al (2012) Synthesis of 68Ga-NOTA-UBI30-41 and in vivo biodistribution in vervet monkeys towards potential PET/CT imaging of infection. J Nucl Med 53:1520

    Google Scholar 

  56. Jasinska AJ, Schmitt CA, Service SK et al (2013) Systems biology of the vervet monkey. ILAR J 54:122–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jia B, Liu Z, Zhu Z et al (2011) Blood clearance kinetics, biodistribution, and radiation dosimetry of a kit-formulated integrin alphavbeta3-selective radiotracer 99mTc-3PRGD 2 in non-human primates. Mol Imaging Biol 13:730–736

    Article  PubMed  Google Scholar 

  58. Doss M, Kolb HC, Zhang JJ et al (2012) Biodistribution and radiation dosimetry of the integrin marker 18F-RGD-K5 determined from whole-body PET/CT in monkeys and humans. J Nucl Med 53:787–795

    Article  PubMed  Google Scholar 

  59. Beer AJ, Haubner R, Goebel M et al (2005) Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 46:1333–1341

    CAS  PubMed  Google Scholar 

  60. Haubner R, Weber WA, Beer AJ et al (2005) Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD. PLoS Med 2:e70

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li D, Zhao X, Zhang L et al (2014) (68)Ga-PRGD2 PET/CT in the evaluation of glioma: a prospective study. Mol Pharmaceut 11:3923–3929

    Article  CAS  Google Scholar 

  62. Zheng K, Liang N, Zhang J et al (2015) 68Ga-NOTA-PRGD2 PET/CT for integrin imaging in patients with lung cancer. J Nucl Med 56:1823–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lang L, Li W, Guo N et al (2011) Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [18Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. Bioconj Chem 22:2415–2422

    Article  CAS  Google Scholar 

  64. Sathekge M, Maes A, Al-Nahhas A et al (2009) What impact can fluorine-18 fluorodeoxyglucose PET/computed tomography have on HIV/AIDS and tuberculosis pandemic? Nucl Med Commun 30:255–257

    Article  PubMed  Google Scholar 

  65. Sathekge M, Maes A, Kgomo M et al (2011) Use of 18F-FDG PET to predict response to first-line tuberculostatics in HIV-associated tuberculosis. J Nucl Med 52:880–885

    Article  PubMed  Google Scholar 

  66. Mukherjee A, Pandey U, Chakravarty R et al (2014) Development of single vial kits for preparation of 68Ga-labelled peptides for PET imaging of neuroendocrine tumours. Mol Imaging Biol 16:550–557

    Article  PubMed  Google Scholar 

  67. Dijkgraaf I, Yim CB, Franssen GM et al (2011) PET imaging of alphavbeta(3) integrin expression in tumours with 68Ga-labelled mono-, di- and tetrameric RGD peptides. Eur J Nucl Med Mol Imaging 38:128–137

    Article  CAS  PubMed  Google Scholar 

  68. Beer AJ, Pelisek J, Heider P et al (2014) PET/CT imaging of integrin alphavbeta3 expression in human carotid atherosclerosis. JACC Cardiovasc imaging 7:178–187

    Article  PubMed  Google Scholar 

  69. Zhu Z, Yin Y, Zheng K et al (2014) Evaluation of synovial angiogenesis in patients with rheumatoid arthritis using 68Ga-PRGD2 PET/CT: a prospective proof-of-concept cohort study. Ann Rheumatic Dis 73:1269–1272

    Article  CAS  Google Scholar 

  70. Choi H, Phi JH, Paeng JC et al (2013) Imaging of integrin alpha(V)beta(3) expression using 68Ga-RGD positron emission tomography in pediatric cerebral infarct. Mol Imaging 12:213–217

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Nuclear Technologies in Medicine and the Biosciences Initiative (NTeMBI), a national technology platform developed and managed by the South African Nuclear Energy Corporation (Necsa) and funded by the Department of Science and Technology. Mrs. B. Mokaleng is thanked for supporting the kit radiolabeling and assistance with the animal experiments. We would further like to thank Mrs. D. van Wyk, Mrs. T. Pulker and Prof V. Naidoo for their excellent support with the non-human primate study. Prof M. Vorster is thanked for interpretation of the clinical PET/CT images. Mrs. V. Satzinger is thanked for providing 3-D-rendered PET/CT images calculated with Siemens in-house software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Rijn Zeevaart.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Thomas Ebenhan, Isabel Schoeman, Daniel D. Rossouw contributed equally to this manuscript

Electronic supplementary material

ESM 1

(DOCX 7.22 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebenhan, T., Schoeman, I., Rossouw, D.D. et al. Evaluation of a Flexible NOTA-RGD Kit Solution Using Gallium-68 from Different 68Ge/68Ga-Generators: Pharmacokinetics and Biodistribution in Nonhuman Primates and Demonstration of Solitary Pulmonary Nodule Imaging in Humans. Mol Imaging Biol 19, 469–482 (2017). https://doi.org/10.1007/s11307-016-1014-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-1014-1

Key words

Navigation