Skip to main content
Log in

Independent QTL underlie resistance to the native pathogen Quambalaria pitereka and the exotic pathogen Austropuccinia psidii in Corymbia

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Fungal diseases such as the exotic myrtle rust (Austropuccinia psidii), and the native Quambalaria shoot blight (QSB; caused by Quambalaria species including Q. pitereka), constitute a significant threat to both native forests and Corymbia plantations in Australia and overseas. We here use quantitative trait loci (QTL) analysis to understand the genetic architecture of resistance to these pathogens in C. torelliana and C. citriodora subsp. variegata. QTL analysis was undertaken using 360 genotypes from two F1 crosses of C. torelliana × C. citriodora subsp. variegata, phenotyped by controlled inoculation with the strain of A. psidii present in Australia and independent inoculations with two strains of Q. pitereka (QSB1 & QSB2). A total of 22 QTL were identified, six for rust and 16 for QSB. The QTL for resistance to A. psidii and Q. pitereka in these pedigrees were independent from one another since they were generally in different parts of the genome, with only one case of co-location (QTL peak location within ± 2 MB). The QTL for the different QSB strains all mapped to discrete locations. The QTL for QSB were generally of a greater effect size than those for A. psidii. Several co-locations with QTL for resistance to rust and other fungal pathogens found in another eucalypt, Eucalyptus globulus, were detected and the implications of this observation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves AA, Rosado CCG, Faria DA, da Silva Guimaraes LM, Lau D, Brommonschenkel SH, Grattapaglia D, Alfenas AC (2012) Genetic mapping provides evidence for the role of additive and non-additive QTLs in the response of inter-specific hybrids of Eucalyptus to Puccinia psidii rust infection. Euphytica 183:27–38

    Article  CAS  Google Scholar 

  • Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–37

    Article  Google Scholar 

  • Asante KS, Brophy JJ, Doran JC, Goldsack RJ, Hibbert DB, Larmour JS (2001) A comparative study of the seedling leaf oils of the spotted gums: species of the Corymbia (Myrtaceae), section Politaria. Aust J Bot 49:55–66

    Article  Google Scholar 

  • Balmelli G, Simeto S, Marroni V, Altier N, Diez JJ (2014) Genetic variation for resistance to Mycosphaerella leaf disease and Eucalyptus rust on Eucalyptus globulus in Uruguay. Australas Plant Pathol 43:97–107

    Article  Google Scholar 

  • Barbour RC, Crawford AC, Henson M, Lee DJ, Potts BM, Shepherd M (2008) The risk of pollen-mediated gene flow from exotic Corymbia plantations into native Corymbia populations in Australia. For Ecol Manag 256:1–19

    Article  Google Scholar 

  • Beenken L (2017) Austropuccinia: a new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa 297:53–61

    Article  Google Scholar 

  • Berthon K, Esperon-Rodriguez M, Beaumont LJ, Carnegie AJ, Leishman MR (2018) Assessment and prioritisation of plant species at risk from myrtle rust (Austropuccinia psidii) under current and future climates in Australia. Biol Conserv 218:154–162

    Article  Google Scholar 

  • Bisgrove SR, Simonich MT, Smith NM, Sattler A, Innes RW (1994) A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6:927–933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brawner JT, Lee DJ, Hardner CM, Dieters MJ (2011) Relationships between early growth and Quambalaria shoot blight tolerance in Corymbia citriodora progeny trials established in Queensland, Australia. Tree Genet Genomes 7:759–772

    Article  Google Scholar 

  • Brooker MIH (2000) A new classification of the genus Eucalyptus L'Hér. (Myrtaceae). Aust Syst Bot 13:79–148

    Article  Google Scholar 

  • Burdon JJ, Thrall PH, Ericson L (2006) The current and future dynamics of disease in plant communities. Annu Rev Phytopathol 44:19–39

    Article  CAS  PubMed  Google Scholar 

  • Burgess TI, Wingfield MJ (2016) Pathogens on the move: a 100-year global experiment with planted eucalypts. Bioscience 67:14–25

    Article  Google Scholar 

  • Butler JB, Freeman JS, Vaillancourt RE, Potts BM, Glen M, Lee DJ, Pegg GS (2016) Evidence for different QTL underlying the immune and hypersensitive responses of Eucalyptus globulus to the rust pathogen Puccinia psidii. Tree Genet Genomes 12:1–13

    Article  Google Scholar 

  • Butler JB, Vaillancourt RE, Potts BM, Lee DJ, King GJ, Baten A, Shepherd M, Freeman JS (2017) Comparative genomics of Eucalyptus and Corymbia reveals low rates of genome structural rearrangement. BMC Genomics 18:397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carnegie AJ (2007) Forest health condition in New South Wales, Australia, 1996–2005. II. Fungal damage recorded in eucalypt plantations during forest health surveys and their management. Australas Plant Pathol 36:225–239

    Article  Google Scholar 

  • Carnegie AJ, Lidbetter JR, Walker J, Horwood MA, Tesoriero L, Glen M, Priest MJ (2010) Uredo rangelii, a taxon in the guava rust complex, newly recorded on Myrtaceae in Australia. Australas Plant Pathol 39:463–466

    Article  Google Scholar 

  • Carnegie AJ, Pegg GS (2018) Lessons from the incursion of myrtle rust in Australia. Annu Rev Phytopathol 56:457–478

    Article  CAS  PubMed  Google Scholar 

  • Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J-B, Fournier E, Tharreau D, Terauchi R, Kroj T (2013) The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25:1463–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesari S (2017) Multiple strategies for pathogen perception by plant immune receptors. New Phytol 219:17–24

    Article  PubMed  CAS  Google Scholar 

  • Christie N, Tobias PA, Naidoo S, Külheim C (2016) The Eucalyptus grandis NBS-LRR gene family: physical clustering and expression hotspots. Front Plant Sci 6:1238

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu HY, Wegel E, Osbourn A (2011) From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants. Plant J 66:66–79

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho T, Wingfield M, Alfenas A, Crous P (1998) Eucalyptus rust: a disease with the potential for serious international implications. Plant Dis 82:819–825

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–511

    Article  CAS  PubMed  Google Scholar 

  • Cui L-G, Shan J-X, Shi M, Gao J-P, Lin H-X (2014) The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J 80:1108–1117

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Dickinson GR, Lee DJ, Huth JR (2004) Early plantation growth and tolerance to ramularia shoot blight of provenances of three spotted gum taxa on a range of sites in Queensland. Aust For 67:122–130

    Article  Google Scholar 

  • Dickinson GR, Wallace HM, Lee DJ (2010) Controlled pollination methods for creating Corymbia hybrids. Silvae Genetica 59:233–241

    Article  Google Scholar 

  • Dillon SK, Brawner JT, Meder R, Lee DJ, Southerton SG (2012) Association genetics in Corymbia citriodora subsp. variegata identifies single nucleotide polymorphisms affecting wood growth and cellulosic pulp yield. New Phytol 195:596–608

    Article  CAS  PubMed  Google Scholar 

  • Dowkiw A, Voisin E, Bastien C (2010) Potential of Eurasian poplar rust to overcome a major quantitative resistance factor. Plant Pathol 59:523–534

    Article  Google Scholar 

  • DPIPWE (2018) Plant species affected by myrtle rust in Tasmania. http://dpipwe.tas.gov.au/biosecurity-tasmania/plant-biosecurity/pests-and-diseases/myrtle-rust/plant-species-affected-by-myrtle-rust-in-tasmania. Accessed 28/04/2018 2018

  • Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13:472–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ennos RA (2015) Resilience of forests to pathogens: an evolutionary ecology perspective. Forestry: An International Journal of Forest Research 88:41–52

    Article  Google Scholar 

  • Ferreira F (1983) Eucalyptus rust. Revista Arvore 7:91–109

    Google Scholar 

  • Field B, Osbourn AE (2008) Metabolic diversification - independent assembly of operon-like gene clusters in different plants. Science 320:543–547

    Article  CAS  PubMed  Google Scholar 

  • Flor H (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:e69

    Google Scholar 

  • Freeman JS, Potts BM, Vaillancourt RE (2008) Few Mendelian genes underlie the quantitative response of a forest tree, Eucalyptus globulus, to a natural fungal epidemic. Genetics 178:563–571

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman JS, Hamilton MG, Lee DJ, Pegg GS, Brawner JT, Tilyard PA, Potts BM (2018) Comparison of host susceptibility to native and exotic pathogens provides evidence for pathogen imposed selection in forest trees. New Phytol 221(4):2261–2272

    Article  PubMed  Google Scholar 

  • Giblin F, Carnegie A (2014) Puccinia psidii (Myrtle rust) - Australian host list. http://www.anpc.asn.au/myrtle-rust. Accessed 10 May 2018

  • Glen M, Alfenas A, Zauza E, Wingfield M, Mohammed C (2007) Puccinia psidii: a threat to the Australian environment and economy—a review. Australas Plant Pathol 36:1–16

    Article  Google Scholar 

  • Gosney BJ, Potts BM, O'Reilly-Wapstra JM, Vaillancourt RE, Fitzgerald H, Davies NW, Freeman JS (2016) Genetic control of cuticular wax compounds in Eucalyptus globulus. New Phytol 209:202–215

    Article  CAS  PubMed  Google Scholar 

  • Gosney BJ (2017) Community genetics of eucalypts: provenance effects on canopy communities, potential drivers and underlying QTL. PhD thesis, University of Tasmania

  • Healey A, Shepherd M, Baten A, King GJ, Lee DJ, Furtado A, Vaillancourt RE, Butler JB, Freeman JS, Potts BM, Grattapaglia D, Junior OBDS, Barry KW, Schmutz J, Simmons B, Henry RJ (2017) Sequencing the branches of the eucalypt tree: comparison between Eucalyptus and Corymbia genomes. In conference: Plant & Animal Genome Conference XXV, San Diego, United States of America

  • Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319

    Article  CAS  PubMed  Google Scholar 

  • Hill KD, Johnson LA (1995) Systematic studies in the eucalypts 7. A revision of the bloodwoods, genus Corymbia (Myrtaceae). Telopea 6:185–504

    Article  Google Scholar 

  • Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319:1785–1786

    Article  CAS  PubMed  Google Scholar 

  • Höglund S, Rönnberg-Wästljung AC, Lagercrantz U, Larsson S (2012) A rare major plant QTL determines non-responsiveness to a gall-forming insect in willow. Tree Genet Genomes 8:1051–1060

    Article  Google Scholar 

  • Hörger AC, Ilyas M, Stephan W, Tellier A, van der Hoorn RAL, Rose LE (2012) Balancing selection at the tomato RCR3 guardee gene family maintains variation in strength of pathogen defense. PLoS Genet 8:e1002813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsieh J-F, Chuah A, Patel HR, Sandhu KS, Foley WJ, Külheim C (2017) Transcriptome profiling of Melaleuca quinquenervia challenged by myrtle rust reveals differences in defense responses among resistant individuals. Phytopathology 108:495–509

    Article  Google Scholar 

  • Hudson CJ, Freeman JS, Jones RC, Potts BM, Wong MM, Weller JL, Hecht VF, Poethig RS, Vaillancourt RE (2014) Genetic control of heterochrony in Eucalyptus globulus. G3 4:1235–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob F, Vernaldi S, Maekawa T (2013) Evolution and conservation of plant NLR functions. Front Immunol 4:297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jansen C, Von Wettstein D, Schäfer W, Kogel K-H, Felk A, Maier FJ (2005) Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Natl Acad Sci U S A 102:16892–16897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson IG, Carnegie AJ, Henson M (2009) Growth, form and Quambalaria shoot blight tolerance of spotted gum in North-Eastern New South Wales, Australia. Silvae Genetica 58:180–191

    Article  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jorge V, Dowkiw A, Faivre-Rampant P, Bastien C (2005) Genetic architecture of qualitative and quantitative Melampsora larici-populina leaf rust resistance in hybrid poplar: genetic mapping and QTL detection. New Phytol 167:113–127

    Article  CAS  PubMed  Google Scholar 

  • Junghans D, Alfenas A, Brommonschenkel S, Oda S, Mello E, Grattapaglia D (2003a) Resistance to rust (Puccinia psidii winter) in Eucalyptus: mode of inheritance and mapping of a major gene with RAPD markers. Theor Appl Genet 108:175–180

    Article  CAS  PubMed  Google Scholar 

  • Junghans DT, Alfenas AC, Maffia LA (2003b) Escala de notas para quantificação da ferrugem em Eucalyptus. Fitopatol Bras 28:184–188

    Article  Google Scholar 

  • Kanzaki H, Saitoh H, Ito A, Fujisawa S, Kamoun S, Katou S, Yoshioka H, Terauchi R (2003) Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol Plant Pathol 4:383–391

    Article  CAS  PubMed  Google Scholar 

  • Karnosky DF (1979) Dutch elm disease: a review of the history, environmental implications, control, and research needs. Environ Conserv 6:311–322

    Article  Google Scholar 

  • Kawanishi T, Uematsu S, Kakishima M, Kagiwada S, Hamamoto H, Horie H, Namba S (2009) First report of rust disease on ohia and the causal fungus, Puccinia psidii, in Japan. J Gen Plant Pathol 75:428–431

    Article  Google Scholar 

  • Kim YJ, Lin N-C, Martin GB (2002) Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109:589–598

    Article  CAS  PubMed  Google Scholar 

  • Kinloch BB, Dupper GE (2002) Genetic specificity in the white pine-blister rust pathosystem. Phytopathology 92:278–280

    Article  PubMed  Google Scholar 

  • Kinloch BB (2003) White pine blister rust in North America: past and prognosis. Phytopathology 93:1044–1047

    Article  PubMed  Google Scholar 

  • Kubisiak TL, Roberds JH, Spaine PC, Doudrick RL (2003) Microsatellite DNA suggests regional structure in the fusiform rust fungus Cronartium quercuum f. sp fusiforme. Heredity 92:41

    Article  CAS  Google Scholar 

  • Kushalappa AC, Yogendra KN, Karre S (2016) Plant innate immune response: qualitative and quantitative resistance. Crit Rev Plant Sci 35:38–55

    Article  CAS  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  CAS  PubMed  Google Scholar 

  • Lanfear R, Ho SYW, Jonathan Davies T, Moles AT, Aarssen L, Swenson NG, Warman L, Zanne AE, Allen AP (2013) Taller plants have lower rates of molecular evolution. Nat Commun 4:1879

    Article  PubMed  CAS  Google Scholar 

  • Lawson SA, McDonald JM, Pegg GS (2008) Forest health surveillance methodology in hardwood plantations in Queensland, Australia. Aust For 71:177–181

    Article  Google Scholar 

  • Lee DJ (2007) Achievements in forest tree genetic improvement in Australia and New Zealand 2: development of Corymbia species and hybrids for plantations in eastern Australia. Aust For 70:11–16

    Article  Google Scholar 

  • Lee DJ, Huth JR, Brawner JT, Dickinson GR (2009) Comparative performance of Corymbia hybrids and parental species in subtropical Queensland and implications for breeding and deployment. Silvae Genetica 58:205–212

    Article  Google Scholar 

  • Lind M, Källman T, Chen J, Ma X-F, Bousquet J, Morgante M, Zaina G, Karlsson B, Elfstrand M, Lascoux M, Stenlid J (2014) A Picea abies linkage map based on SNP markers identifies QTLs for four aspects of resistance to Heterobasidion parviporum infection. PLoS One 9:e101049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lyons E, Freeling M (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J 53:661–673

    Article  CAS  PubMed  Google Scholar 

  • Makinson RO (2018) Myrtle rust reviewed: the impacts of the invasive pathogen Austropuccinia psidii on the Australian environment. Plant Biosecurity Cooperative Research Centre, Canberra

    Google Scholar 

  • Mamani EM, Bueno NW, Faria DA, Guimarães LM, Lau D, Alfenas AC, Grattapaglia D (2010) Positioning of the major locus for Puccinia psidii rust resistance (Ppr1) on the Eucalyptus reference map and its validation across unrelated pedigrees. Tree Genet Genomes 6:953–962

    Article  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  CAS  PubMed  Google Scholar 

  • McTaggart AR, Shuey LS, Granados GM, Ed P, Fraser S, Barnes I, Naidoo S, Wingfield MJ, Roux J (2018) Evidence that Austropuccinia psidii may complete its sexual life cycle on Myrtaceae. Plant Pathol 67:729–734

    Article  Google Scholar 

  • Minchinton E, Smith D, Hamley K, Donald C (2014) Myrtle rust in Australia. Acta Hortic 1055:89–90

    Article  Google Scholar 

  • Moerschbacher BM, Noll U, Ocampo CA, Flott BE, Gotthardt U, Wüslefeld A, Reisener H-J (1990) Hypersensitive lignification response as the mechanism of non-host resistance of wheat against oat crown rust. Physiol Plant 78:609–615

    Article  CAS  Google Scholar 

  • Morin L, Aveyard R, Lidbetter JR, Wilson PG (2012) Investigating the host-range of the rust fungus Puccinia psidii sensu lato across tribes of the family Myrtaceae present in Australia. PLoS One 7:e35434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan ARK, Hussey SG, Pinard D, Merwe KVD, Singh P, Jaarsveld IV, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye C-Y, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Peer YVD, Rokhsar DS, Schmut J (2014) The genome of Eucalyptus grandis. Nature 510:356–362

    Article  CAS  PubMed  Google Scholar 

  • Newcombe G, Bradshaw HD Jr (1996) Quantitative trait loci conferring resistance in hybrid poplar to Septoriapopulicola, the cause of leaf spot. Can J For Res 26:1943–1950

    Article  Google Scholar 

  • Oh E, Hansen EM, Sniezko RA (2006) Port-Orford-cedar resistant to Phytophthora lateralis. For Pathol 36:385–394

    Article  Google Scholar 

  • Paap T, Burgess TI, McComb JA, Shearer BL, St J, Hardy GE (2008) Quambalaria species, including Q. coyrecup sp. nov., implicated in canker and shoot blight diseases causing decline of Corymbia species in the southwest of Western Australia. Mycol Res 112:57–69

    Article  CAS  PubMed  Google Scholar 

  • Parra-O C, Bayly MJ, Drinnan A, Udovicic F, Ladiges P (2009) Phylogeny, major clades and infrageneric classification of Corymbia (Myrtaceae), based on nuclear ribosomal DNA and morphology. Aust Syst Bot 22:384–399

    Article  Google Scholar 

  • Patharkar OR, Gassmann W, Walker JC (2017) Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves. PLoS Genet 13:e1007132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pegg GS, O'Dwyer C, Carnegie AJ, Burgess TI, Wingfield MJ, Drenth A (2008) Quambalaria species associated with plantation and native eucalypts in Australia. Plant Pathol 57:702–714

    Article  CAS  Google Scholar 

  • Pegg GS, Webb R, Carnegie A, Wingfield M, Drenth A (2009) Infection and disease development of Quambalaria spp. on Corymbia and Eucalyptus species. Plant Pathol 58:642–654

    Article  Google Scholar 

  • Pegg GS, Carnegie AJ, Wingfield MJ, Drenth A (2011) Variable resistance to Quambalaria pitereka in spotted gum reveal opportunities for disease screening. Australas Plant Pathol 40:76–86

    Article  Google Scholar 

  • Pegg GS, Perry S, Carnegie A, Ireland K, Giblin F (2012) Understanding myrtle rust epidemiology and host specificity to determine disease impact in Australia. Cooperative research Centre for National Plant Biosecurity. Bruce, Australia

    Google Scholar 

  • Pegg GS, Brawner JT, Lee DJ (2014a) Screening Corymbia populations for resistance to Puccinia psidii. Plant Pathol 63:425–436

    Article  Google Scholar 

  • Pegg GS, Giblin F, McTaggart A, Guymer G, Taylor H, Ireland K, Shivas R, Perry S (2014b) Puccinia psidii in Queensland, Australia: disease symptoms, distribution and impact. Plant Pathol 63:1005–1021

    Article  Google Scholar 

  • Pegg GS, Taylor T, Entwistle P, Guymer G, Giblin F, Carnegie A (2017) Impact of Austropuccinia psidii (myrtle rust) on Myrtaceae-rich wet sclerophyll forests in south east Queensland. PLoS One 12:e0188058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pegg GS, Lee DJ, Carnegie AJ (2018) Predicting impact of Austropuccinia psidii on populations of broad leaved Melaleuca species in Australia. Australas Plant Pathol 47:421–430

    Article  CAS  Google Scholar 

  • Core Team R (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rae AM, Street NR, Robinson KM, Harris N, Taylor G (2009) Five QTL hotspots for yield in short rotation coppice bioenergy poplar: the poplar biomass loci. BMC Plant Biol 9:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rizzo DM, Garbelotto M (2003) Sudden oak death: endangering California and Oregon forest ecosystems. Front Ecol Environ 1:197–204

    Article  Google Scholar 

  • Robin C, Amira M-H, Gion J-M, Kremer A, Desprez-Loustau M-L (2012) Quantitative trait loci for resistance to two fungal pathogens in Quercus robur. Pacific Southwest Research Station. Forest Service, U.S. Department of Agriculture, Albany

    Google Scholar 

  • Rockwood D, Rudie A, Ralph S, Zhu J, Winandy J (2008) Energy product options for Eucalyptus species grown as short rotation woody crops. Int J Mol Sci 9:1361–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosado CCG, da Silva Guimarães LM, Faria DA, de Resende MDV, Cruz CD, Grattapaglia D, Alfenas AC (2016) QTL mapping for resistance to Ceratocystis wilt in Eucalyptus. Tree Genet Genomes 12:72

    Article  Google Scholar 

  • Roux J, Mthalane Z, De Beer Z, Eisenberg B, Wingfield M (2006) Quambalaria leaf and shoot blight on Eucalyptus nitens in South Africa. Australas Plant Pathol 35:427–433

    Article  Google Scholar 

  • Roux J, Greyling I, Coutinho TA, Verleur M, Wingfield MJ (2013) The myrtle rust pathogen, Puccinia psidii, discovered in Africa. IMA Fungus 4:155–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Samils B, Rönnberg-Wästljung A-C, Stenlid J (2011) QTL mapping of resistance to leaf rust in Salix. Tree Genet Genomes 7:1219–1235

    Article  Google Scholar 

  • Santos C, Nelson CD, Zhebentyayeva T, Machado H, Gomes-Laranjo J, Costa RL (2017) First interspecific genetic linkage map for Castanea sativa x Castanea crenata revealed QTLs for resistance to Phytophthora cinnamomi. PLoS One 12:e0184381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santos MR, da Silva Guimarães LM, de Resende MDV, Rosse LN, Zamprogno KC, Alfenas AC (2014) Eucalypts rust (Puccinia psidii) resistance in Eucalyptus pellita. Crop Breed Appl Biotechnol 14:244–250

    Article  Google Scholar 

  • Schoettle AW, Sniezko RA, Kegley A, Burns KS (2013) White pine blister rust resistance in limber pine: evidence for a major gene. Phytopathology 104:163–173

    Article  Google Scholar 

  • Shepherd M, Baten A, Junior OBDS, Lee DJ, Butler JB, Freeman J, Vaillancourt R, Potts B, Grattapaglia D, King G (2015) Towards a Corymbia reference genome: comparative efficiencies of Illumina, PacBio and hybrid de novo assemblies of a complex heterozygous genome. In conference: Vettori C, Vendramin GG, Paffetti D, Travaglini D (eds) Proceedings of the IUFRO Tree Biotechnology 2015 Conference: "forests: the importance to the planet and society", Florence, Italy

  • Shepherd M, Barry KW, Baten A, Butler JB, Freeman JS, Furtado A, Grattapaglia D, Healey A, Henry RJ, King GJ, Lee D, Potts BM, Schmutz J, da Silva Junior OB, Simmons B, Vaillancourt R (2016) Spotting the difference: comparing the genome of Corymbia with its larger cousin Eucalyptus grandis, XXIV edn. In conference: Plant & Animal Genome Conference, San Diego

    Google Scholar 

  • Simpson JA (2000) Quambalaria, a new genus of eucalypt pathogens. Aust Mycol 19:57–62

    Google Scholar 

  • Slee A, Brooker M, Duffy S, West J (2006) EUCLID eucalypts of Australia. 3rd edn. Centre for Plant Biodiversity Research - CSIRO Publishing Canberra

  • Smith A, Potts B, Ratkowsky D, Pinkard E, Mohammed C (2017) Association of Eucalyptus globulus leaf anatomy with susceptibility to Teratosphaeria leaf disease. For Pathol 48:e12395

    Article  Google Scholar 

  • Stone C, Simpson JA, Eldridge RH (1998) Insect and fungal damage to young eucalypt trial plantings in northern New South Wales. Aust For 61:7–20

    Article  Google Scholar 

  • Thumma BR, Pegg GS, Warburton P, Brawner J, Macdonell P, Yang X, Southerton S (2013) Molecular tagging of rust resistance genes in eucalypts. CSIRO Plant Industry, Canberra

    Google Scholar 

  • Tobias PA, Park RF, Külheim C, Guest DI (2015) Wild-sourced Chamelaucium uncinatum have no resistance to Puccinia psidii (myrtle rust). Aust Plant Dis Notes 10:15

    Article  Google Scholar 

  • Tobias PA, Guest DI, Külheim C, Hsieh JF, Park RF (2016) A curious case of resistance to a new encounter pathogen: myrtle rust in Australia. Mol Plant Pathol 17:783–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobias PA, Guest D, Külheim C, Park RF (2017) De novo transcriptome study identifies candidate genes involved in resistance to Austropuccinia psidii (myrtle rust) in Syzygium luehmannnii (Riberry). Phytopathology 108:627–640

    Article  Google Scholar 

  • Uchida J, Zhong S, Killgore E (2006) First report of a rust disease on ohia caused by Puccinia psidii in Hawaii. Plant Dis 90:524–524

    Article  CAS  PubMed  Google Scholar 

  • Van Der Biezen EA, Jones JD (1998) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23:454–456

    Article  PubMed  Google Scholar 

  • Van der Colff D, Dreyer LL, Valentine A, Roets F (2017) Differences in physiological responses to infection by Ceratocystis tsitsikammensis, a native ophiostomatoid pathogen, between a native forest and an exotic forestry tree in South Africa. Fungal Ecol 27:107–115

    Article  Google Scholar 

  • Van der Hoorn RAL, De Wit PJGM, Joosten MHAJ (2002) Balancing selection favors guarding resistance proteins. Trends Plant Sci 7:67–71

    Article  PubMed  Google Scholar 

  • Van der Hoorn RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Ooijen J (2009) MapQTL 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, Kyazma BV

    Google Scholar 

  • van Ooijen JW (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83:613–624

    Article  PubMed  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wallace HM, Trueman SJ (1995) Dispersal of Eucalyptus torelliana seeds by the resin-collecting stingless bee, Trigona carbonaria. Oecologia 104:12–16

    Article  CAS  PubMed  Google Scholar 

  • Wallace HM, Howell MG, Lee DJ (2008) Standard yet unusual mechanisms of long-distance dispersal: seed dispersal of Corymbia torelliana by bees. Divers Distrib 14:87–94

    Article  Google Scholar 

  • Westaway JO (2016) The pathogen Myrtle rust (‘Puccinia psidii’) in the Northern Territory: first detection, new host and potential impacts. Northern Territory Natur 27:13

    Google Scholar 

  • Whalen MC, Stall RE, Staskawicz BJ (1988) Characterization of a gene from a tomato pathogen determining hypersensitive resistance in non-host species and genetic analysis of this resistance in bean. Proc Natl Acad Sci 85:6743–6747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiesner-Hanks T, Nelson R (2016) Multiple disease resistance in plants. Annu Rev Phytopathol 54:229–252

    Article  CAS  PubMed  Google Scholar 

  • Wingfield MJ, Crous PW, Swart WJ (1993) Sporothrix eucalypti (sp. nov.), a shoot and leaf pathogen of Eucalyptus in South Africa. Mycopathologia 123:159–164

    Article  Google Scholar 

  • Xavier AA, Alfenas AC, Matsuoka K, Hodges CS (2001) Infection of resistant and susceptible Eucalyptus grandis genotypes by urediniospores of Puccinia psidii. Australas Plant Pathol 30:277–281

    Article  Google Scholar 

  • Zauza EAV, Alfenas AC, Old K, Couto MMF, Graça RN, Maffia LA (2010) Myrtaceae species resistance to rust caused by Puccinia psidii. Australas Plant Pathol 39:406–411

    Article  Google Scholar 

  • Zhai J, Jeong D-H, De Paoli E, Park S, Rosen BD, Li Y, González AJ, Yan Z, Kitto SL, Grusak MA (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhao J-P, Jiang X-L, Zhang B-Y, Su X-H (2012) Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa. PLoS One 7:e44968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, De Beer ZW, Xie Y, Pegg GS, Wingfield MJ (2007) DNA-based identification of Quambalaria pitereka causing severe leaf blight of Corymbia citriodora in China. Fungal Divers 25:245–254

    Google Scholar 

  • Zhuang J-Y, Wei S-X (2011) Additional materials for the rust flora of Hainan Province, China. Mycosystema 30:853–860

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ben Gosney for his advice regarding methods to evaluate QTL co-location, Mervyn Shepherd for his contributions to the genetic mapping of the Corymbia cross and DAF staff John Oostenbrink and Tracey Menzies for field and nursery work associated with the study.

Funding

This work was supported by the Australian Research Council (grant numbers DP140102552, DP110101621) and an Australian Government Research Training Program Scholarship.

Data archiving statement

New marker sequences are presented in the Online Resources. The Corymbia citriodora subsp. variegata genome assemblies will be published in the Comparative Genomics database (https://genomevolution.org/coge/) when the associated paper is prepared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules S. Freeman.

Additional information

Communicated by C. Kulheim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 270 kb)

ESM 2

(XLSX 50 kb)

ESM 3

(XLSX 50 kb)

ESM 4

(XLSX 14 kb)

ESM 5

(XLSX 14 kb)

ESM 6

(PNG 651 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butler, J.B., Potts, B.M., Vaillancourt, R.E. et al. Independent QTL underlie resistance to the native pathogen Quambalaria pitereka and the exotic pathogen Austropuccinia psidii in Corymbia. Tree Genetics & Genomes 15, 72 (2019). https://doi.org/10.1007/s11295-019-1378-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-019-1378-x

Keywords

Navigation