Skip to main content
Log in

Beyond population genetics: natural epigenetic variation in wild cherry (Prunus avium)

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The epigenetic structure in wild plant populations remains largely unknown despite the substantial interest in evaluating epigenetic diversity in non-model organisms living in nature. The forces that shape natural epigenetic variation continue to be elusive and the potential challenge of neo-Darwinian evolutionary theory is still an open question. In this work, we estimated epigenetic diversity and differentiation within and between five natural wild cherry (Prunus avium L.) populations in northern Greece. By using a combination of either EcoRI/HpaII, or EcoRI/MspI restriction enzymes, we found low epigenetic polymorphism and weak epigenetic structure. In total, 324 methylation-sensitive amplified polymorphic (MSAP) marker bands were detected across 93 wild cherry individuals examined. They represented 272 methylation-susceptible and 52 non-methylated epiloci. The total 5′-CCGG-methylation level, ranged from 37.05 to 59.39 %, presenting an overall mean of 49.67 % and the difference among populations was significant. The relative levels of full-methylation (m-subepiloci), hemi-methylation (h-subepiloci), and non-methylation (n-subepiloci), presented an overall mean of 47.07, 30.99, and 21.92 % respectively. Most of the epigenetic variation (97 %) resided within populations (ΦST = 0.017; p < 0.001). Epigenetic and genetic diversity did not differ significantly and were not significantly correlated. Epigenetic variation was not congruent to genetic variation that was assessed in the same populations and individuals by inter simple sequence repeat (ISSR) markers and by the S-locus. This study supports the thesis that epigenetic variation is uncoupled from genetic variation. It presents a first insight into the partitioning of epigenetic diversity within and among natural wild cherry populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aravanopoulos FA (2014) Genomics of trees. In: Ramawat KG, Merillon JM, Ahuja MR (eds) Tree biotechnology. CRC Press, Boca Raton, pp 514–557

    Google Scholar 

  • Arzate-Mejía RG, Valle-García D, Recillas-Targa F (2011) Signaling epigenetics: novel insights on cell signaling and epigenetic regulation. IUBMB life 63:881–895

    Article  PubMed  Google Scholar 

  • Avramidou E, Ganopoulos IV, Aravanopoulos FA (2010) DNA fingerprinting of elite Greek wild cherry (Prunus avium L.) genotypes using microsatellite markers. Forestry 83:527–533

    Article  Google Scholar 

  • Avramidou EV, Doulis AG, Aravanopoulos FA (2015) Determination of epigenetic inheritance, genetic inheritance, and estimation of genome DNA methylation in a full-sib family of Cupressus sempervirens L. Gene 162:180–187

    Article  Google Scholar 

  • Bonduriansky R, Crean AJ, Day T (2012) The implications of nongenetic inheritance for evolution in changing environments. Evol Appl 5:192–201

    Article  PubMed Central  PubMed  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Cara NS, Marfil CF, Masuelli RW (2013) Epigenetic patterns newly established after interspecific hybridization in natural populations of Solanum. Ecol Evol 3:3764–3779

  • Cervera MT, Ruiz-Garcia L, Martinez-Zapater J (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics 268:543–552

    Article  CAS  PubMed  Google Scholar 

  • Chwedorzewska K, Bednarek P (2012) Genetic and epigenetic variation in a cosmopolitan grass Poa annua from Antarctic and Polish populations. Pol Polar Res 33:63–80

    Google Scholar 

  • Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Ganopoulos I, Aravanopoulos FA, Argiriou A, Kalivas A, Tsaftaris A (2011) Is the genetic diversity of small scattered forest tree populations at the southern limits of their range more prone to stochastic events? A wild cherry case study by microsatellite-based markers. Tree Genet Genomes 7:1299–1313

    Article  Google Scholar 

  • Ganopoulos IV, Aravanopoulos FA, Tsaftaris A (2012a) Genetic differentiation and gene flow between wild and cultivated Prunus avium: an analysis of molecular genetic evidence at a regional scale. Plant Biosyst 147:678–685

    Article  Google Scholar 

  • Ganopoulos I, Aravanopoulos F, Argiriou A, Tsaftaris A (2012b) Genome and population dynamics under selection and neutrality: an example of S-allele diversity in wild cherry (Prunus avium L.). Tree Genet Genomes 8:1181–1190

    Article  Google Scholar 

  • Grativol C, Hemerly AS, Ferreira PCG (2012) Genetic and epigenetic regulation of stress responses in natural plant populations. BBA Gene Regul Mech 1819:176–185

    CAS  Google Scholar 

  • Herrera CM, Bazaga P (2010) Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol 187:867–876

    Article  CAS  PubMed  Google Scholar 

  • Herrera CM, Medrano M, Bazaga P (2013) Epigenetic differentiation persists after male gametogenesis in natural populations of the perennial herb Helleborus foetidus (Ranunculaceae). PLoS One 8:e70730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalisz S, Purugganan MD (2004) Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol Evol 19:309–314

    Article  PubMed  Google Scholar 

  • Li Y, Shan X, Liu X, Hu L, Guo W, Liu B (2008) Utility of the methylation-sensitive amplified polymorphism (MSAP) marker for detection of DNA methylation polymorphism and epigenetic population structure in a wild barley species (Hordeum brevisubulatum). Ecol Res 23:927–930

    Article  CAS  Google Scholar 

  • Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PCG (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5:e10326

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma K, Song Y, Yang X, Zhang Z, Zhang D (2013) Variation in genomic methylation in natural populations of Chinese white poplar. PLoS One 8:e63977

    Article  PubMed Central  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Mariette S, Tavaud M, Arunyawat U, Capdeville G, Millan M, Salin F (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:77

    Article  PubMed Central  PubMed  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okhovat M, Berrio A, Ophir AG, Lysak N, Phelps SM (2014) Balancing selection promotes epigenetic variation in prairie vole spatial memory circuit. Department, Oxford University Press, 2001 Evans Road, Cary, NC 27513, USA, pp E326–E326

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

  • Penn SCP, Siemens DH (2010) Ecological genomics—changing perspectives on Darwin’s basic concerns. Mol Ecol 19:3025–3030

  • Potter D (2011) Prunus. Wild crop relatives: genomic and breeding resources. Springer Berlin Heidelberg, pp 129–145

  • Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91

    Article  CAS  PubMed  Google Scholar 

  • Renn SCP, Siemens DH (2010) Ecological genomics—changing perspectives on Darwin’s basic concerns. Mol Ecol 19:3025–3030

    Article  PubMed  Google Scholar 

  • Reyna-López GE, Ruiz-Herrera J (2004) Specificity of DNA methylation changes during fungal dimorphism and its relationship to polyamines. Curr Microbiol 48:118–123

    Article  PubMed  Google Scholar 

  • Richards EJ (2006) Opinion—inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7:395–U392

    Article  CAS  PubMed  Google Scholar 

  • Richards CL, Schrey AW, Pigliucci M (2012) Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett 15:1016–1025

    Article  PubMed  Google Scholar 

  • Rico L, Ogaya R, Barbeta A, Penuelas J (2014) Changes in DNA methylation fingerprint of Quercus ilex trees in response to experimental field drought simulating projected climate change. Plant Biol 16:419–427

    Article  CAS  PubMed  Google Scholar 

  • Rinehart TA (2004) AFLP analysis using GeneMapper® software and an Excel® macro that aligns and converts output to binary. Biotechniques 37:186–187

    CAS  PubMed  Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175

    Article  CAS  PubMed  Google Scholar 

  • Schmitz RJ, Ecker JR (2012) Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends Plant Sci 17:149–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schrey AW, Alvarez M, Foust CM, Kilvitis HJ, Lee JD, Liebl AL, Martin LB, Richards CL, Robertson M (2013) Ecological epigenetics: beyond MS-AFLP. Integr Compar Biol 53:340–350

    Article  Google Scholar 

  • Schulz B, Eckstein RL, Durka W (2013) Scoring and analysis of methylation‐sensitive amplification polymorphisms for epigenetic population studies. Mol Ecol Res 13:642–653

    Article  CAS  Google Scholar 

  • Schulz B, Eckstein RL, Durka W (2014) Epigenetic variation reflects dynamic habitat conditions in a rare floodplain herb. Mol Ecol 23:3523–3537

  • Shan XH, Li YD, Liu XM, Wu Y, Zhang MZ, Guo WL, Liu B, Yuan YP (2011) Comparative analyses of genetic/epigenetic diversities and structures in a wild barley species (Hordeum brevisubulatum) using MSAP, SSAP and AFLP. Genet Mol Res 11:2749–2759

    Article  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldán‐Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  CAS  PubMed  Google Scholar 

  • Wenzel MA, Piertney SB (2014) Fine-scale population epigenetic structure in relation to gastrointestinal parasite load in red grouse (Lagopus lagopus scotica). Mol Ecol 23:4256–4273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong LZ, Xu CG, Maroof MAS, Zhang Q (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Molec Gen Genet 261:439–446

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippos A. Aravanopoulos.

Additional information

Communicated by V. Decroocq

This article is part of the Topical Collection on Germplasm Diversity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avramidou, E.V., Ganopoulos, I.V., Doulis, A.G. et al. Beyond population genetics: natural epigenetic variation in wild cherry (Prunus avium). Tree Genetics & Genomes 11, 95 (2015). https://doi.org/10.1007/s11295-015-0921-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0921-7

Keywords

Navigation