Skip to main content
Log in

Genetic diversity in peach [Prunus persica (L.) Batsch] at the University of Florida: past, present and future

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The University of Florida (UF) stone fruit breeding and genetics program was created in 1952 to develop early ripening stone fruit cultivars with high quality, adaptation to summer rainfall, low chilling requirements, and the ability to withstand high disease pressure. Diverse germplasm sources were used to introduce desirable traits in UF breeding pool. The main objective of this research was to determine the genetic diversity and population structure of the breeding germplasm, and to search for loci under selection. A total of 195 peach genotypes were used: UF cultivars and advanced selections (n = 168), cultivars and selections from the UF-UGA-USDA joint breeding effort (n = 13), landrace cultivars (n = 4), high-chilling cultivars released by NCSU (n = 5), and related Prunus (n = 5) species. A total of 36 SSR markers distributed across the peach genome amplified 423 alleles. An average of 18 genotypes were detected per marker: A (number of observed alleles) of 11.43, Ae (effective number of alleles) of 2.58, Ho (observed heterozygosity) of 0.4, He (expected heterozygosity) of 0.52, F (Wright’s fixation index) of 0.25, and PIC (polymorphism information content) of 0.48. UPGMA cluster analysis based on Nei’s genetic distance represented best the known pedigree information for the germplasm pools. Two major groups were observed across the germplasm corresponding to melting and non-melting flesh cultivars/selections. Population structure results supported these two major groups. Several loci closely located to genome regions where different phenotypic traits have been previously mapped were detected to be under selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adami M, De Franceschi P, Brandi F, Liverani A, Giovannini D, Rosati C, Dondini L, Tartarini S (2013) Identifying a carotenoid cleavage dioxygenase (ccd4) gene controlling yellow/white fruit flesh color of peach. Plant Mol Biol Report 31:1166–1175

    Article  CAS  Google Scholar 

  • Andersen PC, Sherman WB, Williamson JG (2001) Low chill peach and nectarine cultivars from the University of Florida breeding program: 50 years of progress. Proc Fla State Hort Soc 114:33–36

    Google Scholar 

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F st -outlier method. BMC Bioinforma 9:323–328

    Article  Google Scholar 

  • Aranzana MJ, García-Mas J, Carbo J, Arús P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92

    Article  CAS  Google Scholar 

  • Aranzana MJ, Carbo J, Arús P (2003a) Microsatellite variability in peach (Prunus persica (L.) Batsch): cultivar identification, marker mutation, pedigree inferences and population structure. Theor Appl Genet 106:1341–1352

    PubMed  CAS  Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arús P (2003b) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    PubMed  CAS  Google Scholar 

  • Aranzana MJ, Abbassi E-K, Howad W, Arús P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet 11:69–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Arús P, Messeguer R, Viruel M, Tobbut K, Dirlewanger E, Santi F, Quarta R, Ritter E (1994) The European Prunus mapping project. Euphytica 77:97–100

    Article  Google Scholar 

  • Barnaud A, Lacombe T, Doligez A (2006) Linkage disequilibrium in cultivated grapevine Vitis vinifera L. Theor Appl Genet 112:708–716

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population. Proc R Soc Lond B Biol Sci 263:1619–1626

    Article  Google Scholar 

  • Beckman TG, Rodriguez J, Sherman WB, Werner DJ (2005) Evidence of qualitative suppression of red skin color in peach. HortSci 40:523–524

    Google Scholar 

  • Blaker K (2010) Detection of seed dormancy QTL in three F2 populations of peach. Thesis, University of Florida

  • Bortiri E, Oh S-H, Jiang J, Baggett S, Granger A, Weeks C, Buckingham M, Potter D, Parfitt DE (2001) Phylogeny and systematic of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst Bot 26:797–807

    Google Scholar 

  • Cao K, Wang L, Zhu G, Fang W, Chen C, Luo J (2012) Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Tree Genet Genomics 8:975–990

    Article  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chaparro JX, Werner DJ, O’Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological, isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815

    Article  PubMed  CAS  Google Scholar 

  • Chavez DJ, Chaparro JX (2011) Identification of markers linked to seedlessness in Citrus kinokuni hort. ex Tanaka and its progeny using bulked segregant analysis. HortSci 46:693–697

    CAS  Google Scholar 

  • Cipriani G, Lot G, Huang W-G, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Dirlewanger E, Bodo C (1994) Molecular genetic mapping of peach. In: Schmidt H, Kellerhals M (eds) Progress in temperate fruit breeding. Kluwer, Dordrecht, pp 309–311

    Chapter  Google Scholar 

  • Dirlewanger E, Pronier V, Parvery C, Rothan C, Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97:888–895

    Article  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach (Prunus persica (L.) Batsch) and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. PNAS 101:9891–9896

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dirlewanger E, Quero-García J, Dantec LL, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon J-M, Tartarini S, Letourmy P, Arús P (2012) Comparison of the genetic determinism of two key phonological traits, flowering and maturity dates, in three Prunus species: peach, apricot, and sweet cherry. Heredity 109:280–292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Durham RE, Moore GA, Sherman WB (1987) Isozyme banding patterns and their usefulness as genetic markers in peach. J Am Soc Hortic Sci 112:1013–1018

    CAS  Google Scholar 

  • Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2012) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Genomics. doi:10.1007/s11295-012-0546-z

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falchi R, Vendramin E, Zanon L, Scalabrin S, Cipriani G, Verde I, Vizzotto G, Morgante M (2013) Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach. Plant J 76:175–187

    PubMed  CAS  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Article  PubMed  Google Scholar 

  • FAOSTAT data (2010) http://faostat3.fao.org/home/index.html#DOWNLOAD. Accessed 11 Dec 2012

  • Fischer MC, Foll M, Excoffier L, Heckel G (2011) Enhanced AFLP genome scans detect local adaptation in high-altitude populations of a small rodent (Microtus arvalis). Mol Ecol 20:1450–1462

    Article  PubMed  Google Scholar 

  • Floyd WF (1920) Peach growing in Florida. Fla Coop Ext Bul 27:5–8

    Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Foll M, Fischer MC, Heckel G, Excoffier L (2010) Estimating population structure from AFLP amplification intensity. Mol Ecol 19:4638–4647

    Article  PubMed  CAS  Google Scholar 

  • Font i Forcada C, Oraguzie N, Igartua E, Moreno MA, Gogorcena Y (2012) Population structure and marker-trait associations for pomological traits in peach and nectarine cultivars. Tree Genet Genomics. doi:10.1007/s11295-012-0553-0

    Google Scholar 

  • Frett TJ, Reighard G, Okie WR, Gasic K (2014) Mapping quantitative trait loci associated with blush in peach [Prunus persica (L.) Batsch]. Tree Genet Genomics 10:367–381

    Article  Google Scholar 

  • Goicoechea PG, Petit RJ, Kremer A (2012) Detecting the footprints of divergent selection in oaks with linked markers. Heredity 109:361–371

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hedrick UP (1911) The plums of New York. N.Y. Dept. Agr. 18th Ann. Rpt. v. 3, pt. 2

  • Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetic data. Nucleic Acids Res 36:1034–1040

    Article  Google Scholar 

  • Layne DR, Bassi D (2008) The peach. Botany, production and uses. CABI International, Cambridge

    Book  Google Scholar 

  • Lewis PO, Zaykin D (2002) Genetic data analysis: computer program for the analysis of allelic data. Version 1.1. The University of Connecticut http://lewis.eeb.uconn.edu/lewishome/software.html

  • Li M-H, Iso-Touru T, Hannele L, Kantanen J (2010) A microsatellite-based analysis for the detection of selection on BTA1 and BTA20 in northern Eurasian cattle (Bos taurus) populations. Gen Sel Evol 42:32–45

    Article  Google Scholar 

  • Li X-W, Meng X-Q, Jia H-J, Yu M-L, Ma R-J, Wang L-R, Cao K, Shen Z-J, Niu L, Tian J-B, Chen M-J, Xie M, Arús P, Aranzana MJ (2013) Peach genetic resources: diversity, population structure and linkage disequilibrium. BMC Genet 14:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75 http://mesquiteproject.org

  • Mangin B, Siberchicot A, Nicolas S, Doligez A, This P, Cierco-Ayrolles C (2012) Novel measures of linkage disequilibrium that correct the bias due to populations structure and relatedness. Heredity 108:285–291

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martínez-García PJ, Parfitt DE, Ogundiwin EA, Fass J, Chan HM, Ahmad R, Lurie S, Dandekar A, Gradziel TM, Crisosto CH (2013) High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L.). Tree Genet Genomics 9:19–36

    Article  Google Scholar 

  • Messeguer R, Arús P, Carrera M (1987) Identification of peach cultivars with pollen isozymes. Sci Hortic 31:107–117

    Article  Google Scholar 

  • Mnejja M, García-Mas J, Howad W, Badenes L, Arús P (2004) Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4:163–166

    Article  CAS  Google Scholar 

  • Mnejja M, García-Mas J, Howad W, Arús P (2005) Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol Ecol Notes 5:531–535

    Article  CAS  Google Scholar 

  • Mowrey B, Werner D, Byrne D (1990a) Inheritance of isocitrate dehydrogenase, malate dehydrogenase, and shikimate dehydrogenase in peach and peach × almond hybrids. J Am Soc Hortic Sci 115:312–319

    CAS  Google Scholar 

  • Mowrey B, Werner D, Byrne D (1990b) Isozyme survey of various species of Prunus in the subgenus Amygdalus. Sci Hortic 44:251–260

    Article  CAS  Google Scholar 

  • Nei M, Takezaki N (1983) Estimation of genetic distances and phylogenetic trees from DNA analysis. Proc 5th World Cong Genet Appl Livestock Prod 21:405–412

    Google Scholar 

  • Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genomics 10:587–600

    Article  PubMed  PubMed Central  Google Scholar 

  • Okie WR (1998) Handbook of peach and nectarine varieties. Agricultural Research Service, Washington, DC

    Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  PubMed Central  Google Scholar 

  • Quarta R, Dettori MT, Verde I, Broda Z, Gentile A (1998) Genetic analysis of agronomic traits and genetic linkage mapping in a BC1 population using RFLPs and RAPDs. Acta Horticult 465:51–59

    CAS  Google Scholar 

  • Rajapakse S, Belthoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R, Abbott AG (1995) Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theor Appl Genet 90:503–510

    Article  PubMed  CAS  Google Scholar 

  • Rehder A (1940) Manual of cultivated trees and shrubs hardy in North America, 2nd edn. Macmillan, New York

    Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomics 8:379–389

    Article  Google Scholar 

  • Sargent CS (1905) Manual of the trees of North America. Riverside, Cambridge

  • Scorza R, Okie WR (1991) Peaches (Prunus). Acta Horticult 290:177–234

    Google Scholar 

  • Sharpe RH (1957) Okinawa peach shows promising resistance to root-knot nematodes. Proc Fla State Hort Soc 70:320–322

    Google Scholar 

  • Sharpe RH (1961) Developing new peach varieties for Florida. Proc Fla State Hort Soc 74:348–352

    Google Scholar 

  • Sharpe RH (1969) Sub-tropical peaches and nectarines. Proc Fla State Hort Soc 82:302–306

    Google Scholar 

  • Sharpe RH, Aitken JB (1971) Progress of the nectarine. Proc Fla State Hort Soc 84:338–345

    Google Scholar 

  • Sharpe RH, Webb TE, Lundy HW (1954) Peach variety tests. Proc Fla State Hort Soc 67:245–247

    Google Scholar 

  • Sherman WB, Lyrene PM (2003) Low chill breeding of deciduous fruits at the University of Florida. Proc. XXIV IHC—Genetics and breeding tree fruits and nuts. Ed. J. Janick. Acta Horticult 622:599–605

    Google Scholar 

  • Sherman WB, Rodriguez J, Miller EP (1984) Progress in low-chill peaches and nectarines from Florida. Proc Fla State Hort Soc 97:320–322

    Google Scholar 

  • Sherman WB, Topp BL, Lyrene PM (1990) Non-melting flesh for fresh market peaches. Proc Fla State Hort Soc 103:293–294

    Google Scholar 

  • Sherman WB, Lyrene PM, Sharpe RH (1996) Low-chill peach and nectarine breeding at the University of Florida. Proc Fla State Hort Soc 109:222–223

    Google Scholar 

  • Sokal R, Michener C (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438

    Google Scholar 

  • Sooriyapathirana SS (2009) QTL analysis of fruit color and estimation of genetic diversity using DNA markers in sweet cherry. Ph.D. Dissertation. Michigan State University

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 101:421–428

    Article  CAS  Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MP, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    Article  PubMed  CAS  Google Scholar 

  • Tsumura Y, Uchiyama K, Moriguchi Y, Ueno S, Ihara-Ujino T (2012) Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer, Cryptomeria japonica. Heredity 109:349–360

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vendramin E, Dettori MT, Giovinazzi J, Micali S, Quarta R, Verde I (2007) A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Mol Ecol Notes 7:307–310

    Article  CAS  Google Scholar 

  • Verde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Horticult 592:291–297

    CAS  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  PubMed  CAS  Google Scholar 

  • Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT et al (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS ONE 7:e35668

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vitalis R, Dawson K, Boursot P (2001) Interpretation of variation across marker loci as evidence of selection. Genetics 158:1811–1823

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vitalis R, Dawson K, Boursot P, Belkhir K (2003) Detsel 1.0: a computer program to detect markers responding to selection. J Hered 94:429–431

    Article  PubMed  CAS  Google Scholar 

  • Wang Y (1985) Peach growing and germplasm in China. Acta Horticult 173:51–55

    Google Scholar 

  • Wang Y, Georgi LL, Zhebentyayeva TN, Reighard GL, Scorza R, Abbott AG (2002) High-throughput targeted SSR marker development in peach (Prunus persica). Genome 45:319–328

    Article  PubMed  CAS  Google Scholar 

  • Weir SB (1996) Genetic data analysis II. Methods for discrete population genetics data. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Wight WF (1915) Native American species of Prunus. Bull US Dept Agric 179:1–75

    Google Scholar 

  • Wünsch A, Hormaza JI (2002) Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers. Euphytica 125:56–67

    Article  Google Scholar 

  • Yamamoto T, Shimada T, Imai T, Yaegart H, Haji T et al (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271–278

    Article  CAS  Google Scholar 

  • Yamamoto T, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J Jpn Soc Horticult Sci 74:204–213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Wayne Sherman for his collaboration in the completion of this manuscript.

Data archiving statement

Germplasm materials and their phenotypic information are provided in Table S-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario J. Chavez.

Additional information

Communicated by A. G. Abbott

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S-1

(DOC 1001 kb)

Fig. S-2

(DOC 1007 kb)

Fig. S-3

(DOC 1009 kb)

Fig. S-4

(DOC 1076 kb)

Fig. S-5

(DOC 1044 kb)

Fig. S-6

(DOC 1087 kb)

Fig. S-7

(DOC 1089 kb)

Fig. S-8

(DOC 1093 kb)

Fig. S-9

(DOC 1086 kb)

Fig. S-10

(DOC 1092 kb)

Fig. S-11

(DOC 1102 kb)

Fig. S-12

(DOC 1093 kb)

Fig. S-13

(DOC 104 kb)

Fig. S-14

(DOC 2126 kb)

Fig. S-15

(DOC 74 kb)

Fig. S-16

(DOC 73 kb)

Fig. S-17

(DOC 70 kb)

Fig. S-18

(DOC 73 kb)

Fig. S-19

(DOC 42 kb)

Fig. S-20

(DOC 212 kb)

Fig. S-21

(DOC 211 kb)

Fig. S-22

(DOC 216 kb)

Fig. S-23

(DOC 212 kb)

Fig. S-24

(DOC 153 kb)

Fig. S-25

(DOC 145 kb)

Fig. S-26

(DOC 139 kb)

Fig. S-27

(DOC 143 kb)

Fig. S-28

(DOC 139 kb)

Fig. S-29

(DOC 97 kb)

Fig. S-30

(DOC 124 kb)

Fig. S-31

(DOC 123 kb)

Fig. S-32

(DOC 185 kb)

Fig. S-33

(DOC 188 kb)

Fig. S-34

(DOC 202 kb)

Fig. S-35

(DOC 126 kb)

Fig. S-36

(DOC 144 kb)

Fig. S-37

(DOC 130 kb)

Fig. S-38

(DOC 70 kb)

Fig. S-39

(DOC 70 kb)

Fig. S-40

(DOC 69 kb)

Fig. S-41

(DOC 42 kb)

Fig. S-42

(DOC 204 kb)

Fig. S-43

(DOC 212 kb)

Fig. S-44

(DOC 251 kb)

Fig. S-45

(DOC 89 kb)

Fig. S-46

(DOC 144 kb)

Fig. S-47

(DOC 186 kb)

Fig. S-48

(DOC 180 kb)

Fig. S-49

(DOC 136 kb)

Table S-1

(DOC 297 kb)

Table S-2

(DOC 79 kb)

Table S-3

(DOC 78 kb)

Table S-4

(DOC 50 kb)

Table S-5

(DOC 65 kb)

Table S-6

(DOC 48 kb)

Table S-7

(DOC 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavez, D.J., Beckman, T.G., Werner, D.J. et al. Genetic diversity in peach [Prunus persica (L.) Batsch] at the University of Florida: past, present and future. Tree Genetics & Genomes 10, 1399–1417 (2014). https://doi.org/10.1007/s11295-014-0769-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0769-2

Keywords

Navigation