Skip to main content
Log in

Root-exudate flux variations among four co-existing canopy species in a temperate forest, Japan

  • Original Article
  • Published:
Ecological Research

Abstract

Plants allocate carbon to root exudates to mine nitrogen (N) from soil organic matter (SOM). Little is known about how the root-exudation rate varies among co-existing woody species. We conducted an in situ experiment in a warm temperate forest on two dominant species, Quercus serrata and Ilex pedunculosa, and two of their congeneric species, Quercus glauca and Ilex macropoda, respectively. We hypothesized that the root-exudation rate varies among these species because of their distinct functional traits and N demands. Root-exudation rates were measured using a non-soil culture method during the growing season from June 2013 to May 2014. We also measured foliar N concentrations and the activities of N-degrading enzymes in the rhizosphere soils. The annual demand for N was calculated from the growth rate and allometric equations for biomass. The root-exudation rates of Q. serrata and I. macropoda were consistently greater than those of their congeneric evergreen species on root-length, root-weight, and individual-tree bases. The variations of the annual N demand of these species mirrored this pattern. Within a species, root-exudation rates correlated positively to leaf N contents, suggesting a physiological linkage between photosynthetic capacities and belowground carbon allocation. Root-exudation rates also correlated positively to the activities of polyphenol oxidase, an enzyme that decomposes N from recalcitrant SOM. Our results suggest that the variations of the root-exudation among co-existing species relate to their functional traits and demand for N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biology. 3:139–148. doi:10.1055/s-2001-12905

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant, Cell Environ 32:666–681. doi:10.1111/j.1365-3040.2009.01926.x

    Article  CAS  Google Scholar 

  • Bengtson P, Barker J, Grayston SJ (2012) Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecol Evol 2:1843–1852. doi:10.1002/ece3.311

    Article  PubMed  PubMed Central  Google Scholar 

  • Bödeker IT, Clemmensen KE, de Boer W, Martin F, Olson Å, Lindahl BD (2014) Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol 203:245–256. doi:10.1111/nph.12791

    Article  PubMed  Google Scholar 

  • Brzostek ER, Greco A, Drake JE, Finzi AC (2013) Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochemistry 115:65–76. doi:10.1007/s10533-012-9818-9

    Article  CAS  Google Scholar 

  • Brzostek ER, Fisher JB, Phillips RP (2014) Modeling the carbon cost of plant nitrogen acquisition: mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation. J Geophys Res Biogeosci 119:1684–1697. doi:10.1002/2014JG002660

    Article  Google Scholar 

  • Brzostek ER, Dragoni D, Brown ZA, Phillips RP (2015) Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytol 206:1274–1282. doi:10.1111/nph.13303

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips RP, Asao S, McNickle GG, Brzostek ER, Jastrow JD (2014) Synthesis and modeling perspectives of rhizosphere priming. New Phytol 201:31–44. doi:10.1111/nph.12440

    Article  CAS  PubMed  Google Scholar 

  • Epron D, Ngao J, Dannoura M, Bakker MR, Zeller B, Bazot S, Bosc A, Plain C, Lata JC, Priault P, Barthes L, Loustau D (2011) Seasonal variations of belowground carbon transfer assessed by in situ 13δ CO2 pulse labelling of trees. Biogeosciences 8:1153–1168. doi:10.5194/bg-8-1153-2011

    Article  CAS  Google Scholar 

  • Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Chang Biol 21:2082–2094. doi:10.1111/gcb.12816

    Article  PubMed  Google Scholar 

  • Fransson PMA, Johansson EM (2010) Elevated CO2 and nitrogen influence exudation of soluble organic compounds by ectomycorrhizal root systems. FEMS Microb Ecol 71:186–196. doi:10.1111/.1574-6941.2009.00795.x

    Article  CAS  Google Scholar 

  • German DP, Weintraub WN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD (2011) Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem 43:1387–1397. doi:10.1016/j.soilbio.2011.03.017

    Article  CAS  Google Scholar 

  • Goto Y, Kominami Y, Miyama T, Tamai K, Kanazawa Y (2003) Aboveground biomass and net primary production of a broad-leaved secondary forest in the southern part of Kyoto prefecture, central Japan. Bull For For Prod Res Inst 387:115–147 (in Japanese with English summary)

    Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56. doi:10.1016/S0929-1393(96)00126-6

    Article  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339. doi:10.1016/0169-5347(92)90126-V

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Murphy DV (2007) Microbial response time to sugar and amino acid additions to soil. Soil Biol Biochem 39:2178–2182. doi:10.1016/j.soilbio.2007.03.017

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480. doi:10.1111/j.1469-8137.2004.01130.x

    Article  CAS  Google Scholar 

  • Jones DL, Shannon D, Junvee-Fortune T, Farrar JF (2005) Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biol Biochem 37:179–181. doi:10.1016/j.soilbio.2004.07.021

    Article  CAS  Google Scholar 

  • Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551. doi:10.1111/nph.13138

    Article  CAS  PubMed  Google Scholar 

  • Kaneko S, Akieda N, Naito F, Tamai K, Hirano Y (2007) Nitrogen budget of a rehabilitated forest on a degraded granitic hill. J Forest Res 12:38–44. doi:10.1007/s10310-006-0248-1

    Article  CAS  Google Scholar 

  • Karst J, Gaster J, Wiley E, Landhäusser SM (2016) Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiol. doi:10.1093/treephys/tpw090

    Google Scholar 

  • Kobe RK, Lepczyk CA, Iyer M (2005) Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86:2780–2792. doi:10.1890/04-1830

    Article  Google Scholar 

  • Kraus TE, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems—a review. Plant Soil 256:41–66. doi:10.1023/A:1026206511084

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Cheng W (2004) Photosynthesis controls of CO2 efflux from maize rhizosphere. Plant Soil 263:85–99. doi:10.1023/B:PLSO.0000047728.61591.fd

    Article  CAS  Google Scholar 

  • Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447. doi:10.1111/nph.13201

    Article  CAS  PubMed  Google Scholar 

  • Lucas García JA, Barbas C, Probanza A, Barrientos ML, Gutierrez Manero FJ (2001) Low molecular weight organic acids and fatty acids in root exudates of two Lupinus cultivars at flowering and fruiting stages. Phytochem Anal 12:305–311. doi:10.1002/pca.596

    Article  PubMed  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppalammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard Rewald B, Zadworny M (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518. doi:10.1111/nph.13363

    Article  PubMed  Google Scholar 

  • Nannipieri P, Eldor P (2009) The chemical and functional characterization of soil N and its biotic components. Soil Biol Biochem 41:2357–2369. doi:10.1016/j.soilbio.2009.07.013

    Article  CAS  Google Scholar 

  • Neumann G, Römheld V (2007) The release of root exudates as affected by the plant physiological status. In: Varanini Z, Nannipieri P, Pinton R (eds) Biochemistry and organic substances at the soil plant interface, 2nd edn. CRC Press, The rhizosphere, pp 24–57

    Google Scholar 

  • Perveen N, Barot S, Alvarez G, Klumpp K, Martin R, Rapaport A, Herfurth D, Louault F, Fontaine S (2014) Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model. Glob Chang Biol 20:1174–1190. doi:10.1111/gcb.12493

    Article  PubMed  Google Scholar 

  • Phillips RP, Erlitz Y, Bier R, Bernhardt ES (2008) New approach for capturing soluble root exudates in forest soils. Funct Ecol 22:990–999. doi:10.1111/j.1365-2435.2008.01495.x

    Article  Google Scholar 

  • Phillips RP, Bernhardt ES, Schlesinger WH (2009) Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree Physiol 29:1513–1523. doi:10.1093/treephys/tpp083

    Article  CAS  PubMed  Google Scholar 

  • Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194. doi:10.1111/j.1461-0248.2010.01570.x

    Article  PubMed  Google Scholar 

  • Pregitzer KS, King JS, Burton AJ, Brown SE (2000) Responses of tree fine roots to temperature. New Phytol 147:105–115. doi:10.1046/j.1469-8137.2000.00689.x

    Article  CAS  Google Scholar 

  • Prescott CE, Grayston SJ (2013) Tree species influence on micorbial communities in litter and soil: current knowledge and research needs. For Ecol Manag 309:19–27. doi:10.1016/j.foreco.2013.02.034

    Article  Google Scholar 

  • Reich PB, Kloeppel BD, Ellsworth DS, Walters MB (1995) Different photosynthesis nitrogen relations in deciduous hardwood and evergreen coniferous tree species. Oecologia 104:24–30. doi:10.1007/BF00365558

    Article  CAS  PubMed  Google Scholar 

  • Romaní AM, Fischer H, Mille-Lindblom C, Tranvik LJ (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559–2569. doi:10.1890/0012-9658(2006)87[2559:IOBAFO]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Rovira AD (1969) Plant root exudates. The botanical review 35:35–57. doi:10.1007/BF02859887

    Article  CAS  Google Scholar 

  • Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315. doi:10.1016/S0038-0717(02)00074-3

    Article  CAS  Google Scholar 

  • Steinweg JM, Dukes JS, Wallenstein MD (2012) Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. Soil Biol Biochem 55:85–92. doi:10.1016/j.soilbio.2012.06.015

    Article  CAS  Google Scholar 

  • Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 27:1047–1054. doi:10.1111/j.1365-3040.2004.01209.x

    Article  CAS  Google Scholar 

  • Uselman SM, Qualls RG, Thomas RB (2000) Effects of increased atmospheric CO2, temperature and soil N availability on root exudation of dissolved organic carbon by N-fixing tree (Robinia pseudoacacia L.). Plant Soil 222:101–202. doi:10.1023/A:1004705416108

    Article  Google Scholar 

  • Wang X, Tang C, Severi J, Butterly CR, Baldock JA (2016) Rhizospehre priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation. New Phytol. doi:10.1111/nph.13966

    PubMed Central  Google Scholar 

  • Yasumura Y, Hikosaka K, Hirose T (2006) Seasonal changes in photosynthesis, nitrogen content and nitrogen partitioning in Lindera umbellata leaves grown in high or low irradiance. Tree Physiol 26:1315–1323. doi:10.1093/treephys/26.10.1315

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Wheeler E, Phillips RP (2014) Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biol Biochem 78:213–221. doi:10.1016/j.soilbio.2014.07.022

    Article  CAS  Google Scholar 

  • Zhu B, Gutknecht JLM, Herman DJ, Keck DC, Firestone MK, Cheng W (2014) Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol Biochem 76:183–192. doi:10.1016/j.soilbio.2014.04.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Masako Dannoura, Dr. Keiichi Okada, Dr. Mioko Ataka, Chihiro Ikeda, and Daiki Yokoyama for their invaluable assistance, and Dr. Rebecca Spake, Dr. Ryota Aoyagi, and Dr. Taiki Mori for improving the manuscript. We thank two anonymous reviewers and the handling editor for their constructive comments. This study was financially supported by a Grant-in-Aid 22255002 from the Science Research from the Ministry of Education, Culture, Sports and Technology of Japan to K.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11284_2017_1440_MOESM1_ESM.doc

There is one figure for the pilot experiment and three figures of the seasonal dynamics of the leaf N content, exudation, and enzyme activities in the supplementary material. One table for the girth information of the target trees is included. The method for calculating the annual N demands for building leaves is described in detail. (DOC 458 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Kominami, Y., Yoshimura, K. et al. Root-exudate flux variations among four co-existing canopy species in a temperate forest, Japan. Ecol Res 32, 331–339 (2017). https://doi.org/10.1007/s11284-017-1440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-017-1440-9

Keywords

Navigation