Skip to main content
Log in

An Efficient FrWT and IPCA Tools for an Automated Healthcare CAD System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Continuous monitoring of physiological parameters is critical in order to minimize casualties, therefore automated healthcare computer-assisted diagnostic systems require efficient signal processing techniques. It is currently the primary concern upon which the majority of research is concentrated. It is becoming a way of life to reach long age by which accurate and error-free treatments are done. Electrocardiograms (ECGs) are crucial in the current era for minimizing the global mortality rate. An essential clinical feature of electrocardiograms (ECGs) is the determination of heart rate. It is measured in beats per minute. It differs based on age and a number of other associated variables, including body position, temperature, emotion, smoke, and hormonal imbalances, among others. Arrhythmia of the heart, characterised by an irregular heart rate, is currently the leading cause of increased mortality. The complete diagnosis of ECG is accomplished using the blocks such as pre-processing, feature extraction, and detection/classification. Unfortunately, the analysis of ECG becomes complex under the wide variety of the recording datasets which is influenced by variety of noises and artifacts. It motivates to choose a novel combination of above-mentioned blocks which can serve the purpose. The fractional wavelet transform (FrWT) is chosen in conjunction with independent principal component analysis (IPCA) in this article. FrWT, which combines the fractional Fourier transform and the wavelet transform, satisfies the requirements for feature extraction and pre-processing, respectively, whereas IPCA satisfies the requirement for detection and classification. It also helps to understand the cardiac and non-cardiac behaviour of the electrical recording of the specific critical cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

An application software that is currently being developed by the authors.

Code Availability

Developed by Varun Gupta and Gavendra Singh.

References

  1. Rai, H. M., & Chatterjee, K. (2018). A novel adaptive feature extraction for detection of cardiac arrhythmias using hybrid technique MRDWT & MPNN classifier from ECG big data. Big Data Research, 12, 13–22. https://doi.org/10.1016/j.bdr.2018.02.003

    Article  Google Scholar 

  2. Leelavathy, J., & Selva Brunda, S. (2020). A cloud-based secured framework for smart medical diagnosis: A survey. International Journal of Medical Engineering and Informatics, 12(6), 581–590.

    Article  Google Scholar 

  3. Kaur, H., & Rajni, R. (2017). On the detection of cardiac arrhythmia with principal component analysis. Wireless Personal Communications, 97, 5495–5509. https://doi.org/10.1007/s11277-017-4791-1

    Article  Google Scholar 

  4. Gupta, V. M., & M,. (2021). R-peak detection for improved analysis in health informatics. International Journal of Medical Engineering and Informatics, 13(3), 213–223. https://doi.org/10.1504/IJMEI.2021.114888

    Article  Google Scholar 

  5. Jangra, M., et al. (2020). ECG arrhythmia classification using modified visual geometry group network (mVGGNet). Journal of Intelligent & Fuzzy Systems, 38, 3151–3165.

    Article  Google Scholar 

  6. Rahman, M. A., Milu, M. M. H., Anjum, A., et al. (2019). A statistical designing approach to MATLAB based functions for the ECG signal preprocessing. Iran Journal of Computer Science, 2, 167–178.

    Article  Google Scholar 

  7. Gupta, V., et al. (2020). R-peak detection based chaos analysis of ECG signal. Analog Integrated Circuits and Signal Processing, 102, 479–490.

    Article  Google Scholar 

  8. Sahoo, S., et al. (2019). Machine learning approach to detect cardiac arrhythmias in ECG signals: A survey. IRBM. https://doi.org/10.1016/j.irbm.2019.12.001

    Article  Google Scholar 

  9. Alshebly, Y. S., & Nafea, M. (2019). Isolation of fetal ECG signals from abdominal ECG using wavelet analysis. Irbm. https://doi.org/10.1016/j.irbm.2019.12.002

    Article  Google Scholar 

  10. Bensafia, K., Mansour, A., Boudraa, A. O., et al. (2020). Blind separation of ECG signals from noisy signals affected by electrosurgical artifacts. Analog Integrated Circuits and Signal Processing, 104, 191–204. https://doi.org/10.1007/s10470-020-01674-1

    Article  Google Scholar 

  11. Sheetal, A., Singh, H., & Kaur, A. (2019). QRS detection of ECG signal using hybrid derivative and MaMeMi filter by effectively eliminating the baseline wander. Analog Integrated Circuits and Signal Processing, 98, 1–9. https://doi.org/10.1007/s10470-018-1249-7

    Article  Google Scholar 

  12. Gupta, V., Mittal, M., Mittal, V., et al. (2021). BP signal analysis using emerging techniques and its validation using ECG signal. Sens Imaging, 22, 25. https://doi.org/10.1007/s11220-021-00349-z

    Article  Google Scholar 

  13. Gupta, V., & Mittal, M. (2020). A novel method of cardiac arrhythmia detection in electrocardiogram signal. International Journal of Medical Engineering and Informatics, 12(5), 489–499. https://doi.org/10.1504/IJMEI.2020.109943

    Article  Google Scholar 

  14. Gupta, V., & Mittal, M. (2019). QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases. Journal of The Institution of Engineers (India): Series B. https://doi.org/10.1007/s40031-019-00398-9

    Article  Google Scholar 

  15. Mehta, S. S., & Lingayat, N. S. (2008). Development of SVM based ECG pattern recognition technique. IETE Journal of Research, 54(1), 5–11.

    Article  Google Scholar 

  16. Hari, M. R., Anurag, T., & Shailja, S. (2013). ECG signal processing for abnormalities detection using multi-resolution wavelet transform and artificial neural network classifier. Measurement, 46(9), 3238–3246. https://doi.org/10.1016/j.measurement.2013.05.021

    Article  Google Scholar 

  17. Chandra, S., et al. (2020). A comparative analysis of performance of several wavelet based ECG data compression methodologies. IRBM. https://doi.org/10.1016/j.irbm.2020.05.004

    Article  Google Scholar 

  18. Hanumantha Rao, G., & Rekha, S. (2019). A 0.8-V, 55.1-dB DR, 100 Hz low-pass filter with low-power PTAT for bio-medical applications. IETE Journal of Research. https://doi.org/10.1080/03772063.2019.1682074

    Article  Google Scholar 

  19. Halder, B., Mitra, S., & Mitra, M. (2022). Classification of complete myocardial infarction using rule-based rough set method and rough set explorer system. IETE Journal of Research. https://doi.org/10.1080/03772063.2019.1588175

    Article  Google Scholar 

  20. Saini, I., Singh, D., & Khosla, A. (2013). P- and T-wave delineation in ECG signals using support vector machine. IETE Journal of Research, 59(5), 615–623.

    Article  Google Scholar 

  21. Chattopadhyay, S., Sarkar, G., & Das, A. (2018). Sleep apnea diagnosis by DWT-based kurtosis, radar and histogram analysis of electrocardiogram. IETE Journal of Research. https://doi.org/10.1080/03772063.2018.1507765

    Article  Google Scholar 

  22. Rai, H. M., & Chatterjee, K. (2021). Hybrid CNN-LSTM deep learning model and ensemble technique for automatic detection of myocardial infarction using big ECG data. Applied Intelligence. https://doi.org/10.1007/s10489-021-02696-6

    Article  Google Scholar 

  23. Chandra, S., Gupta, R., Ghosh, S., & Mondal, S. (2019). An intelligent and power efficient biomedical sensor node for wireless cardiovascular health monitoring. IETE Journal of Research. https://doi.org/10.1080/03772063.2019.1611489

    Article  Google Scholar 

  24. Pandia, R. J., & Edward, R. S. N. (2019). Smart-monitor: Patient monitoring system for IoT-based healthcare system using deep learning. IETE Journal of Research. https://doi.org/10.1080/03772063.2019.1649215

    Article  Google Scholar 

  25. Preethi, D., & Valarmathi, R. S. (2019). A novel classification and synchronous noise removal during fetal heart rate monitoring. IETE Journal of Research. https://doi.org/10.1080/03772063.2019.1567276

    Article  Google Scholar 

  26. Engin, M. (2002). ECG-late potential extraction using averaged singular—Values of third-order cumulant (TOC) based bispectrum. Analog Integrated Circuits and Signal Processing, 33, 301–303. https://doi.org/10.1023/A:1020722030618

    Article  Google Scholar 

  27. Mortezaee, M., et al. (2019). An improved SSA-based technique for EMG removal from ECG. IRBM, 40, 62–68.

    Article  Google Scholar 

  28. Giorgio, A., Guaragnella, C., & Giliberti, D. A. (2020). Improving ECG signal denoising using wavelet transform for the prediction of malignant arrhythmias. International Journal of Medical Engineering and Informatics, 12(2), 135–150.

    Article  Google Scholar 

  29. Mukherjee, S., Adhikari, A., & Roy, M. (2020). Malignant melanoma detection using multi layer preceptron with visually imperceptible features and PCA components from Med-Node dataset. International Journal of Medical Engineering and Informatics, 12(2), 151–168.

    Article  Google Scholar 

  30. Mostafi, M., Cherif, L. H., & Debbal, S. M. (2019). Discrimination of signals phonocardiograms by using SNR report. International Journal of Medical Engineering and Informatics, 11(4), 386–403.

    Article  Google Scholar 

  31. Gupta, V., Mittal, M., Mittal, V., & Saxena, N. K. (2021). A critical review of feature extraction techniques for ECG signal analysis. Journal of The Institution of Engineers (India): Series B, 102, 1049–1060. https://doi.org/10.1007/s40031-021-00606-5

    Article  Google Scholar 

  32. Gupta, V., Mittal, M., Mittal, V., Sharma, A. K., & Saxena, N. K. (2021). A novel feature extraction-based ECG signal analysis. Journal of The Institution of Engineers (India): Series B, 102(5), 903–913.

    Google Scholar 

  33. Gupta, V., Mittal, M., & Mittal, V. (2021). Chaos theory and ARTFA: Emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias. Wireless Personal Communications, 118, 3615–3646. https://doi.org/10.1007/s11277-021-08411-5

    Article  Google Scholar 

  34. Gupta, V., & Mittal, M. (2015). Principal component analysis & factor analysis as an enhanced tool of pattern recognition. Int J Elec Electr Eng Telecoms, 1(2), 73–78.

    Google Scholar 

  35. Gupta, V., et al. (2019). Auto-regressive time frequency analysis (ARTFA) of electrocardiogram (ECG) signal. International Journal of Applied Engineering Research, 13(6), 133–138.

    MathSciNet  Google Scholar 

  36. Gupta, V., & Mittal, M. (2020). Arrhythmia detection in ECG signal using fractional wavelet transform with principal component analysis. Journal of The Institution of Engineers India Series B. https://doi.org/10.1007/s40031-020-00488-z

    Article  Google Scholar 

  37. Rai, H. M., Chatterjee, K., & Mukherjee, C. (2020). Hybrid CNN-LSTM model for automatic prediction of cardiac arrhythmias from ECG big data. In 2020 IEEE 7th Uttar Pradesh section international conference on electrical, electronics and computer engineering (UPCON). https://doi.org/10.1109/upcon50219.2020.9376450

  38. Rai, H. M., & Chatterjee, K. (2018). A unique feature extraction using MRDWT for automatic classification of abnormal heartbeat from ECG big data with multilayered probabilistic neural network classifier. Applied Soft Computing, 72, 596–608. https://doi.org/10.1016/j.asoc.2018.04.005

    Article  Google Scholar 

  39. Luz, E. J. S., Schwartz, W. R., Chávez, G. C., & Menotti, D. (2016). ECG-based heartbeat classification for arrhythmia detection: A survey. Computer Methods and Programs in Biomedicine, 127, 144–164.

    Article  PubMed  Google Scholar 

  40. Mehta, S. S., & Lingayat, N. S. (2008). SVM-based algorithm for recognition of QRS complexes in electrocardiogram. IRBM, 29, 310–317.

    Article  Google Scholar 

  41. Mehta, S. S., & Lingayat, N. S. (2008). Development of SVM based classification techniques for the delineation of wave components in 12-lead electrocardiogram. Biomedical Signal Processing and Control, 3(4), 341–349.

    Article  Google Scholar 

  42. Saini, I., Kumar, V., & Khosla, A. (2013). Feature extraction of ECG signal using a support vector machine. Journal of Electrocardiology, 46(4), 1–37.

    Article  Google Scholar 

  43. Saini, I., Singh, D., & Khosla, A. (2014). P- and T-wave delineation in ECG signals using support vector machine. IETE Journal of Research, 59(5), 615–623.

    Article  Google Scholar 

  44. Saini, I., Singh, D., & Khosla, A. (2013). QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases. Journal of Advanced Research, 4(4), 331–344.

    Article  PubMed  Google Scholar 

  45. Vishwanath, B., Pujeri, R. V., & Devanagavi, G. (2019). Probabilistic principal component analysis-based dimensionality reduction and optimization for arrhythmia classification using ECG signals. Bio-Algorithms and Med-Systems, 15(1), 1–18.

    Article  Google Scholar 

  46. Gupta, V., Mittal, M., & Mittal, V. (2023). FrWT-PPCA based R-peak detection for improved management of healthcare system. IETE Journal of Research. https://doi.org/10.1080/03772063.2021.1982412

    Article  Google Scholar 

  47. Kavitha, V., & Hanumanthappa, M. (2020). Predicting oral squamous cell carcinoma in tobacco users by utilising fuzzy-based decision tree algorithm. International Journal of Medical Engineering and Informatics, 12(5), 435–446.

    Article  Google Scholar 

  48. Pankaj, N., Aparna, N. M., Davinder, S. R., & Sumit, K. (2020). Lung cancer classification using feed forward back propagation neural network for CT images. International Journal of Medical Engineering and Informatics, 12(5), 447–456.

    Article  Google Scholar 

  49. Jhajharia, S., Verma, S., & Kumar, R. (2020). An amalgamated prediction model for breast cancer detection using fuzzy features. International Journal of Medical Engineering and Informatics, 12(4), 345–356.

    Article  Google Scholar 

  50. Kalbande, D., Naik, R., Jatakia, J., & Khopkar, U. (2020). An artificial intelligence approach for the recognition of early stages of eczema. International Journal of Medical Engineering and Informatics, 12(1), 52–61.

    Article  Google Scholar 

  51. Mia, M. R., Roy, S., Das, S. K., et al. (2020). Mango leaf disease recognition using neural network and support vector machine. Iran Journal of Computer Science, 3, 185–193.

    Article  Google Scholar 

  52. Singh, R. S., Saini, B. S., & Sunkaria, R. K. (2019). Arrhythmia detection based on time–frequency features of heart rate variability and back-propagation neural network. Iran Journal of Computer Science, 2, 245–257.

    Article  Google Scholar 

  53. Peng, Z. K., Tse, P. W., & Chu, F. L. (2005). A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing. Mechanical Systems and Signal Processing, 19(5), 974–988.

    Article  Google Scholar 

  54. Gupta, V., Mittal, M., Mittal, V., & Chaturvedi, Y. (2022). Detection of R-peaks using fractional Fourier transform and principal component analysis. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-021-03484-3

    Article  Google Scholar 

  55. Saini, I., Singh, D., & Khosla, A. (2014). Electrocardiogram beat classification using empirical mode decomposition and multiclass directed acyclic graph support vector machine. Computers & Electrical Engineering, 40(5), 1774–1787.

    Article  Google Scholar 

  56. Divya, B. S., Subramaniam, K., & Nanjundaswamy, H. R. (2020). A study on indirect immunofluorescence image classification methods for bioinformatics. International Journal of Medical Engineering and Informatics, 12(6), 553–567.

    Article  Google Scholar 

  57. Kotsilieris, T., Pintelas, E., Livieris, I. E., & Pintelas, P. (2020). Predicting anxiety disorders and suicide tendency using machine learning: A review. International Journal of Medical Engineering and Informatics, 12(6), 599–608.

    Article  Google Scholar 

  58. Mathappan, N., Soundariya, R. S., Natarajan, A., & Gopalan, S. K. (2020). Bio-medical analysis of breast cancer risk detection based on deep neural network. International Journal of Medical Engineering and Informatics, 12(6), 529–541.

    Article  Google Scholar 

  59. Sharba, G. K., Wali, M. K., & Al-Timemy, A. H. (2020). Wavelet-based feature extraction technique for classification of different shoulder girdle motions for high-level upper limb amputees. International Journal of Medical Engineering and Informatics, 12(6), 609–619.

    Article  Google Scholar 

  60. Naser, A., Tantawi, M., Shedeed, H. A., & Tolba, M. F. (2020). Automated EEG-based epilepsy detection using BA_SVM classifiers. International Journal of Medical Engineering and Informatics, 12(6), 620–625.

    Article  Google Scholar 

  61. Sivasankar, E., Pradeep, R., & Sivanandham, S. (2019). Identification of important biomarkers for detection of chronic kidney disease using feature selection and classification algorithms. International Journal of Medical Engineering and Informatics, 11(4), 368–385.

    Article  Google Scholar 

  62. Bouzid-Daho, A., Boughazi, M., & Petit, E. (2019). Detection of abnormal blood cells by segmentation and classification. International Journal of Medical Engineering and Informatics, 11(1), 57–70.

    Article  Google Scholar 

  63. Satapathy, S. K., Dehuri, S., & Jagadev, A. K. (2018). SMOTE and ABC optimised RBF network for coping with imbalanced class in EEG signal classification. International Journal of Medical Engineering and Informatics, 10(3), 215–234.

    Article  Google Scholar 

  64. Tarapiah, S., Daadoo, M., & Atalla, S. (2017). Android-based real-time healthcare system. International Journal of Medical Engineering and Informatics, 9(3), 253–268.

    Article  Google Scholar 

  65. Hatamikia, S., & Nasrabadi, A. M. (2017). Recognition of emotional states in response to audio-visual inductions based on nonlinear analysis and self-organisation map classification. International Journal of Medical Engineering and Informatics, 9(2), 110–133.

    Article  Google Scholar 

  66. Gupta, V., Mittal, M., & Mittal, V. (2020). Chaos theory: An emerging tool for arrhythmia detection. Sensing and Imaging, 21(10), 1–22. https://doi.org/10.1007/s11220-020-0272-9

    Article  Google Scholar 

  67. Kaur, H., & Rajni, R. (2017). Electrocardiogram signal analysis for R-peak detection and denoising with hybrid linearization and principal component analysis. Turkish Journal of Electrical Engineering and Computer Sciences, 25(3), 2163–2175.

    Article  Google Scholar 

  68. Gupta, V., et al. (2020). Performance evaluation of various pre-processing techniques for R-peak detection in ECG signal. IETE Journal of Research. https://doi.org/10.1080/03772063.2020.1756473

    Article  Google Scholar 

  69. Gupta, V., & Mittal, M. (2020). Efficient R-peak detection in electrocardiogram signal based on features extracted using Hilbert transform and burg method. Journal of the Institution of Engineers (India): Series B, 101(1), 23–34.

    Google Scholar 

  70. Sadhukhan, D., & Mitra, M. (2012). R-peak detection algorithm for ECG using double difference and RR interval processing. Procedia Technology, 4, 873–877.

    Article  Google Scholar 

  71. Arzeno, N. M., Deng, Z. D., & Poon, C. S. (2008). Analysis of first-derivative based QRS detection algorithms. IEEE Transactions on Biomedical Engineering, 55(2), 478–484.

    Article  PubMed  Google Scholar 

  72. Saini, I., Singh, D., & Khosla, A. (2013). Detection of QRS-complex using K-nearest neighbour algorithm. International Journal of Medical Engineering and Informatics, 5(1), 81–101.

    Article  Google Scholar 

  73. Sood, S. K., & Mahajan, I. (2018). A fog assisted cyber-physical framework for identifying and preventing coronary heart disease. Wireless Personal Communication, 101, 143–165. https://doi.org/10.1007/s11277-018-5680-y

    Article  Google Scholar 

  74. Acharya, U. R., Fujita, H., Adam, M., Lih, O. S., Sudarshan, V. K., Hong, T. J., Koh, J. E., Hagiwara, Y., Chua, C. K., Poo, C. K., & San, T. R. (2017). Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study. Information Sciences, 377, 17–29.

    Article  Google Scholar 

  75. Tuncer, T., Dogan, S., Pławiak, P., & Acharya, U. R. (2019). Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2019.104923

    Article  Google Scholar 

  76. Subrahmanyam, V., Zubair, M. A., Kumar, A., et al. (2018). A low power minimal error IEEE 802.15.4 transceiver for heart monitoring in IoT applications. Wireless Personal Communication, 100, 611–629. https://doi.org/10.1007/s11277-018-5255-y

    Article  Google Scholar 

  77. Lin, C. F., Lin, T. X., Lin, C. I., & Chang, C. C. (2019). A mobile cloud-based health promotion system for cardiovascular diseases. Wireless Personal Communications, 108, 2179–2193. https://doi.org/10.1007/s11277-019-06516-6

    Article  Google Scholar 

  78. Mehta, S. S., & Lingayat, N. S. (2007). Support vector machine for cardiac beat detection in single lead electrocardiogram. IAENG International Journal of Applied Mathematics, 36(2), 1–7.

    MathSciNet  Google Scholar 

  79. Jong, G. J., Aripriharta, H., & Horng, G. J. (2017). Fuzzy inference engine integrated with blood pressure and heart variability for medical web platform. Wireless Personal Communication, 92, 1695–1712. https://doi.org/10.1007/s11277-016-3629-6

    Article  Google Scholar 

  80. Banu, S. S., & Baskaran, K. (2018). Hybrid FGWO based FLCs modeling for performance enhancement in wireless body area networks. Wireless Personal Communication, 100, 1163–1199. https://doi.org/10.1007/s11277-018-5626-4

    Article  Google Scholar 

  81. Mehta, S. S., & Lingayat, N. S. (2009). Application of support vector machine for the detection of P- and T-waves in 12-lead electrocardiogram. Computer Methods and Programs in Biomedicine, 93, 46–60.

    Article  CAS  PubMed  Google Scholar 

  82. Mehta, S. S., & Lingayat, N. S. (2007). Development of entropy based algorithm for cardiac beat detection in 12-lead electrocardiogram. Signal Processing, 87, 3190–3201.

    Article  Google Scholar 

  83. He, R., Wang, K., Li, Q., Yuan, Y., Zhao, N., Liu, Y., & Zhang, H. (2017). A novel method for the detection of R-peaks in ECG based on K-nearest neighbors and particle swarm optimization. EURASIP Journal on Advances in Signal Processing. https://doi.org/10.1186/s13634-017-0519-3

    Article  Google Scholar 

  84. Pahim, O., & Sornmo, L. (1984). Software QRS detection in ambulatory monitoring-a review. Medical and Biological Engineering and Computing, 22(4), 289–297.

    Article  Google Scholar 

  85. Kora, P. (2017). ECG based myocardial infarction detection using hybrid firefly algorithm. Computer Methods and Programs in Biomedicine, 152, 141–148.

    Article  PubMed  Google Scholar 

  86. Gillian, N. (2016). Gesture recognition toolkit (GRT). Available: http://www.nickgillian.com/wiki/pmwiki.php/GRT/KNN

  87. Marinho, L. B., Nascimento, N. M. M., Souza, J. W. M., Gurgel, M. V., Filho, P. P. R., & de Albuquerque, V. H. C. (2019). A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification. Future Generation Computer Systems, 97, 564–577.

    Article  Google Scholar 

  88. Majumder, S., Shaw, A. K., & Sarkar, S. K. (2016). Hardware implementation of singular value decomposition. Journal of The Institution of Engineers (India): Series B, 97, 227–231. https://doi.org/10.1007/s40031-014-0158-0

    Article  Google Scholar 

  89. Sarma Dhulipala, V. R., & Kanagachidambaresan, G. R. (2014). Cardiac care assistance using self configured sensor network—A remote patient monitoring system. Journal of The Institution of Engineers (India): Series B, 95, 101–106. https://doi.org/10.1007/s40031-014-0084-1

    Article  Google Scholar 

  90. Krishna, B. T. (2014). Electrocardiogram signal and linear time-frequency transforms. Journal of The Institution of Engineers (India): Series B, 95, 377–382. https://doi.org/10.1007/s40031-014-0097-9

    Article  Google Scholar 

  91. Mohanty, M., Basu, M., Pattanayak, D. N., et al. (2018). A simple network to remove interference in surface EMG signal from single gene affected phenylketonuria patients for proper diagnosis. Journal of The Institution of Engineers (India): Series B, 99, 109–123. https://doi.org/10.1007/s40031-017-0301-9

    Article  Google Scholar 

  92. Schrauwen, B., D’Haene, M., Verstraeten, D., & Van Campenhout, J. (2008). Compact hardware liquid statemachines on FPGA for real-time speech recognition. Neural Networks, 21(3), 511–523.

    Article  PubMed  Google Scholar 

  93. Alomar, M. L., Canals, V., Mora, N. P., Moll, V. M., & Rosselló, J. L. (2016). FPGA-based stochastic echo state networks for time-series forecasting. Computational intelligence and neuroscience. https://doi.org/10.1155/2016/3917892

    Article  PubMed  Google Scholar 

  94. Yasin, K. A. Y. A. (2018). Classification of PVC Beat in ECG using basic temporal features. Balkan Journal of Electrical and Computer Engineering, 6(2), 78–82.

    Article  Google Scholar 

  95. Sageena, G., Sharma, M., & Kapur, A. (2021). Evolution of smart healthcare: telemedicine during COVID-19 pandemic. Journal of The Institution of Engineers (India): Series B. https://doi.org/10.1007/s40031-021-00568-8

    Article  Google Scholar 

  96. Kora, P., & Krishna, K. S. R. (2016). Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block. International Journal of the Cardiovascular Academy, 2(1), 44–48.

    Article  Google Scholar 

  97. Swapnarekha, H., Behera, H. S., Roy, D., et al. (2021). Competitive deep learning methods for COVID-19 detection using X-ray images. Journal of The Institution of Engineers (India): Series B. https://doi.org/10.1007/s40031-021-00589-3

    Article  Google Scholar 

  98. Sahoo, S., Kanungo, B., Behera, S., & Sabut, S. (2017). Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement, 108, 55–66.

    Article  Google Scholar 

  99. Rai, H. M., Trivedi, A., Chatterjee, K., & Shukla, S. (2014). R-peak detection using daubechies wavelet and ECG signal classification using radial basis function neural network. Journal of The Institution of Engineers (India): Series B, 95(1), 63–71.

    Google Scholar 

  100. Rajagopal, R., & Ranganathan, V. (2017). Evaluation of effect of unsupervised dimensionality reduction techniques on automated arrhythmia classification. Biomedical Signal Processing and Control, 34, 1–8.

    Article  Google Scholar 

  101. Marouf, M., Saranovac, L., & Vukomanovic, G. (2017). Algorithm for EMG noise level approximation in ECG signals. Biomedical Signal Processing and Control, 34, 158–165.

    Article  Google Scholar 

  102. Singh, O., & Sunkaria, R. K. (2011). A robust R-peak detection algorithm using wavelet packets. Int. J. Comput. App., 36, 37–43.

    Google Scholar 

  103. Zidelmal, Z., Amirou, A., Adnane, M., & Belouchrani, A. (2012). QRS detection based on wavelet coefficients. Computer Methods and Programs in Biomedicine, 107(3), 490–496.

    Article  PubMed  Google Scholar 

  104. Chakraborty, M., & Ghosh, D. (2018). Quantitative assessment of arrhythmia using non-linear approach: A non-invasive prognostic tool. Journal of The Institution of Engineers (India): Series B, 99(2), 167–172.

    Google Scholar 

  105. Rabbani, H., Mahjoob, M. P., Farahabadi, E., & Farahabadi, A. (2011). R peak detection in electrocardiogram signal based on an optimal combination of wavelet transform, hilbert transform, and adaptive thresholding. Journal of medical signals and sensors, 1(2), 91.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sabherwal, P., Agrawal, M., & Singh, L. (2017). Automatic Detection of the R Peaks in Single-Lead ECG Signal. Circuits, Systems, and Signal Processing, 36, 4637–4652.

    Article  Google Scholar 

  107. M. Klingspor. (2015). Hilbert transform: Mathematical theory and applications to signal processing. Ph.D. dissertation, Matematiska Institutionen, Link¨Opings Universitet, Karlskrona.

  108. Liu, Y., Tan, Y., Xie, H., Wang, W., & Gao, Z. (2014). Time-frequency analysis of non-stationary electrocardiogram signals using Hilbert-Huang Transform. J. Rev Sci Instr., 85, 073502–073507.

    Article  Google Scholar 

  109. Soorma, N., Singh, J., & Tiwari, M. (2014). Feature extraction of ECG Signal using HHT algorithm. Int. J. Eng. Trends and Tech., 8(8), 454–460.

    Article  Google Scholar 

  110. Savalia, S., Acosta, E., & Emamian, V. (2017). Classification of cardiovascular disease using feature extraction and artificial neural networks. Journal of Biosciences and Medicines, 5(11), 64–79.

    Article  Google Scholar 

  111. Rehman, B. K., Kumar, A., & Sharma, P. (2016). A novel approach for R-peak detection in the electrocardiogram (ECG) signal. ARPN Journal of Engineering and Applied Sciences, 11(21), 13500–13503.

    Google Scholar 

  112. Saini, I., Singh, D., & Khosla, A. (2014). K-nearest neighbour-based algorithm for P- and T-waves detection and delineation. Journal of Medical Engineering & Technology, 38(3), 115–124.

    Article  Google Scholar 

  113. Rooijakkers, M. J., Rabotti, C., Oei, S. G., & Mischi, M. (2012). Low complexity R-peak detection for ambulatory fetal monitoring. Physiological Measurement, 33(7), 1135–1150.

    Article  PubMed  Google Scholar 

  114. Hammad, M., Ibrahim, M., & Hadhoud, M. (2014). A novel approach for maternal and fetal R-peaks detection. International Organization of Sientific Research, 4(1), 84–90.

    Google Scholar 

  115. Jambholkr, T., Saini, B. S., & Saini, I. (2018). An adaptive thresholding technique for QRS-complex detection in ECG signal based on empirical wavelet transform. International Journal of Medical Engineering and Informatics, 10(2), 135–149.

    Article  Google Scholar 

  116. Cha, W. J., Ryu, G. S., Lee, J. H., Cho, W. H., Jung, Y., & Park, K. H. (2016). R-peak detection algorithm in ECG signal based on multi-scaled primitive signal. Journal of Korea Multimedia Society, 19(5), 818–825. https://doi.org/10.9717/kmms.2016.19.5.818

    Article  Google Scholar 

  117. Bouaziz, F., Boutana, D., & Benidir, M. (2014). Multiresolution wavelet-based QRS complex detection algorithm suited to several abnormal morphologies. IET Signal Process, 8(7), 774–782.

    Article  Google Scholar 

  118. Zhou, S., & Tan, B. (2019). Electrocardiogram soft computing using hybrid deep learning CNN-ELM. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2019.105778

    Article  Google Scholar 

  119. Tripathy, R. K., Bhattacharyya, A., & Pachori, R. B. (2019). Localization of myocardial infarction from multi-lead ECG signals using multiscale analysis and convolutional neural network. IEEE Sensors Journal, 19(23), 11437–11448. https://doi.org/10.1109/JSEN.2019.2935552

    Article  Google Scholar 

  120. Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adam, M., Gertych, A., & Tan, R. S. (2017). A deep convolutional neural network model to classify heartbeats. Computers in Biology and Medicine, 89, 389–396.

    Article  PubMed  Google Scholar 

  121. Acharya, U. R., Fujita, H., Lih, O. S., Hagiwara, Y., Tan, J. H., & Adam, M. (2017). Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Information Sciences, 405, 81–90.

    Article  Google Scholar 

  122. Xiang, Y., Lin, Z., & Meng, J. (2018). Automatic QRS complex detection using two-level convolutional neural network. Biomedical Engineering Online, 17(1), 1–17.

    Article  Google Scholar 

  123. Oh, S. L., Ng, E. Y. K., Tan, R. S., & Acharya, U. R. (2018). Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Computers in Biology and Medicine, 102, 278–287.

    Article  PubMed  Google Scholar 

  124. Padmavathi, K., & Ramakrishna, K. S. (2015). Detection of atrial fibrillation using continuous wavelet transform and wavelet coherence. International Journal of Systems, Control and Communications, 6(4), 292–304.

    Article  Google Scholar 

  125. Sharma, T., & Sharma, K. K. (2016). QRS complex detection in ECG signals using the synchrosqueezed wavelet transform. IETE Journal of Research, 62(6), 885–892.

    Article  Google Scholar 

  126. Slimane, Z. E. H., & Ali, A. N. (2010). QRS complex detection using empirical mode decomposition. Digital Signal Processing, 20(4), 1221–1228.

    Article  Google Scholar 

  127. Christov, I. I. (2004). Real time electrocardiogram QRS detection using combined adaptive threshold. Biomedical Engineering Online. https://doi.org/10.1186/14-925X-3-28

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hamdi, S., Abdallah, A. B., & Bedoui, M. H. (2017). Real time QRS complex detection using DFA and regular grammar. Biomedical Engineering Online, 16(1), 1–20. https://doi.org/10.1186/s12938-017-0322-2

    Article  Google Scholar 

  129. Sasikala, P., & Wahidabanu, R. S. D. (2010). Robust R peak and QRS detection in electrocardiogram using wavelet transform. International Journal of Advanced Computer Science and Applications, 1(6), 48–53.

    Article  Google Scholar 

  130. Saadatmand-Tarzjan, M., Rashidi, N., & Iqbal, M. (2019). A novel parametric deformable model based on calculus of variations for QRS detection. Iranian Journal of Science and Technology, Transactions A: Science, 43(3), 1101–1107.

    Article  Google Scholar 

  131. Kohli, S. S., Makwana, N., Mishra, N., & Sagar, B. (2012). Hilbert Transform based adaptive ECG R-peak detection technique. International Journal of Electrical and Computer Engineering, 2(5), 639–643.

    Google Scholar 

  132. Chattopadhyay, S., Sarkar, G., & Das, A. (2015). Sleep apnea diagnosis by DWT-based kurtosis, radar and histogram analysis of electrocardiogram. IETE Journal of Research, 13(2), 119–123.

    Google Scholar 

  133. https://www.healthline.com/health/dangerous-heart-rate#what-increases-heart-rate

  134. Gupta, V. V., & Mittal, M. (2019). A comparison of ecg signal pre-processing using FrFT, FrWT and IPCA for Improved Analysis. IRBM, 40(3), 145–156. https://doi.org/10.1016/j.irbm.2019.04.003

    Article  Google Scholar 

  135. Gupta, V. (2023). Wavelet transform and vector machines as emerging tools for computational medicine. Journal of Ambient Intelligence and Humanized Computing, 14, 4595–4605.

    Article  Google Scholar 

  136. Gupta, V. (2023). Application of chaos theory for arrhythmia detection in pathological databases. International Journal of Medical Engineering and Informatics, 15(2), 191–202.

    Article  Google Scholar 

  137. Gupta, V., Mittal, M., Mittal, V., et al. (2023). ECG signal analysis based on the spectrogram and spider monkey optimisation technique. Journal of The Institution of Engineers (India): Series B, 104, 153–164.

    Google Scholar 

  138. Gupta, V., Sharma, A. K., Pandey, P. K., Jaiswal, R. K., & Gupta, A. (2023). Pre-processing based ECG signal analysis using emerging tools. IETE Journal of Research. https://doi.org/10.1080/03772063.2023.2202162

    Article  Google Scholar 

  139. Pannaga, P., Kowshik, K. U. R. (2014) Ventricular arrhythmia classification by neural network classifier using wavelet transform features. In: Proceedings of ASAR International Conference, 14th May-2014, Mysore, India (pp. 11–16).

Download references

Funding

It is not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The execution of every simulation and methodology is attributed by Varun Gupta, Salim and Nitin Kumar Saxena. The literature review is conducted collectively by Varun Gupta and Abhas Kanungo.

Corresponding author

Correspondence to Varun Gupta.

Ethics declarations

Conflict of interest

The authors affirm that no conflicts of interest exist.

Ethical Approval

Every author guarantees ethical approval.

Consent to Participate

Each author has provided informed consent to take part.

Consent for Publication

All authors have ensured to publish the paper in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Saxena, N.K., Kanungo, A. et al. An Efficient FrWT and IPCA Tools for an Automated Healthcare CAD System. Wireless Pers Commun 133, 2687–2708 (2023). https://doi.org/10.1007/s11277-024-10877-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10877-y

Keywords

Navigation