Skip to main content

Advertisement

Log in

A Simple Network to Remove Interference in Surface EMG Signal from Single Gene Affected Phenylketonuria Patients for Proper Diagnosis

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Recently Autosomal Recessive Single Gene (ARSG) diseases are highly effective to the children within the age of 5–10 years. One of the most ARSG disease is a Phenylketonuria (PKU). This single gene disease is associated with mutations in the gene that encodes the enzyme phenylalanine hydroxylase (PAH, Gene 612349). Through this mutation process, PAH of the gene affected patient can not properly manufacture PAH as a result the patients suffer from decreased muscle tone which shows abnormality in EMG signal. Here the extraction of the quality of the PKU affected EMG (PKU-EMG) signal is a keen interest, so it is highly necessary to remove the added ECG signal as well as the biological and instrumental noises. In the Present paper we proposed a method for detection and classification of the PKU affected EMG signal. Here Discrete Wavelet Transformation is implemented for extraction of the features of the PKU affected EMG signal. Adaptive Neuro-Fuzzy Inference System (ANFIS) network is used for the classification of the signal. Modified Particle Swarm Optimization (MPSO) and Modified Genetic Algorithm (MGA) are used to train the ANFIS network. Simulation result shows that the proposed method gives better performance as compared to existing approaches. Also it gives better accuracy of 98.02% for the detection of PKU-EMG signal. The advantages of the proposed model is to use MGA and MPSO to train the parameters of ANFIS network for classification of ECG and EMG signal of PKU affected patients. The proposed method obtained the high SNR (18.13 ± 0.36 dB), SNR (0.52 ± 1.62 dB), RE (0.02 ± 0.32), MSE (0.64 ± 2.01), CC (0.99 ± 0.02), RMSE (0.75 ± 0.35) and MFRE (0.01 ± 0.02), RMSE (0.75 ± 0.35) and MFRE (0.01 ± 0.02). From authors knowledge, this is the first time a composite method is used for diagnosis of PKU affected patients. The accuracy (98.02%), sensitivity (100%) and specificity (98.59%) helps for proper clinical treatment. It can help for readers/researchers to improve the aforesaid performance for future prospective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M.R. Zurflüh, J. Zschocke, M. Lindner, F. Feillet, C. Chery, A. Burlina, R.C. Stevens, B. Thöny, N. Blau, Molecular genetics of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Hum. Mutat. 29, 167–175 (2008)

    Article  Google Scholar 

  2. R. Koch, B. Burton, G. Hoganson, R. Peterson, W. Rhead, B. Rouse, R. Scott, J. Wolff, A.M. Stern, F. Guttler, M. Nelson, F. de la Cruz, J. Coldwell, R. Erbe, M.T. Geraghty, C. Shear, J. Thomas, C. Azen, Phenylketonuria in adulthood: a collaborative study. J. Inherit. Metab. Dis. 25, 333–346 (2002)

    Article  Google Scholar 

  3. R. Matalon, P. Justice, M.N. Deanching, Phenylalanine hydroxylase in human placenta: novel system for study of phenylketonuria. (Letter). Lancet 309, 853–854 (1977). Note: Originally Volume I

    Article  Google Scholar 

  4. S.L.C. Woo, Personal Communication. Houston, Tex. 1/11/1983

  5. A.S. Lidsky, F.D. Ledley, A.G. DiLella, S.C.M. Kwok, S.P. Daiger, K.J.H. Robson, S.L.C. Woo, Extensive restriction site polymorphism at the human phenylalanine hydroxylase locus and application in prenatal diagnosis of phenylketonuria. Am. J. Hum. Genet. 37, 619–634 (1985)

    Google Scholar 

  6. A.G. DiLella, W.-M. Huang, S.L.C. Woo, Screening for phenylketonuria mutations by DNA amplification with the polymerase chain reaction. Lancet 331, 497–499 (1988). Note: Originally Volume I

    Article  Google Scholar 

  7. S.J. Ramus, S.M. Forrest, R.G.H. Cotton, Illegitimate transcription of phenylalanine hydroxylase for detection of mutations in patients with phenylketonuria. Hum. Mutat. 1, 154–158 (1992)

    Article  Google Scholar 

  8. V. Abadie, J. Jaruzelska, S. Lyonnet, P. Millasseau, M. Berthelon, F. Rey, A. Munnich, J. Rey, Illegitimate transcription of the phenylalanine hydroxylase gene in lymphocytes for identification of mutations in phenylketonuria. Hum. Molec. Genet. 2, 31–34 (1993)

    Article  Google Scholar 

  9. L. Kalaydjieva, B. Dworniczak, V. Kucinskas, V. Yurgeliavicius, E. Kunert, J. Horst, Geographical distribution gradients of the major PKU mutations and the linked haplotypes. Hum. Genet. 86, 411–413 (1991)

    Article  Google Scholar 

  10. S.M. Forrest, H.H. Dahl, D.W. Howells, I. Dianzani, R.G.H. Cotton, Mutation detection in phenylketonuria by using chemical cleavage of mismatch: importance of using probes from both normal and patient samples. Am. J. Hum. Genet. 49, 175–183 (1991). Note: Erratum: Am. J. Hum. Genet. 50: 659 only, 1992

    Google Scholar 

  11. A.J. Haig, J.B. Gelblum, J.J. Rechtien, A.J. Gitter, Technology assessment: the use of surface EMG in the diagnosis and treatment of nerve and muscle disorders. Muscle Nerve 9, 392–395 (1996)

    Article  Google Scholar 

  12. D. Gross, A. Grassino, W.R.D. Ross, P.T. Macklem, Electromyogram pattern of diaphragmatic fatigue. Appl. Physiol. 46, 1–7 (1979)

    Article  Google Scholar 

  13. R. Merletti, Politecnico di Torino. Int. Soc. Electrophysiol. Kinesiol. (ISEK) 9(1), 3–4 (1999)

    Google Scholar 

  14. J. Pan, W. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32, 230–236 (1985)

    Article  Google Scholar 

  15. S. Levine, J. Gillen, P. Weiser, M. Gillen, E. Kwatny, Description and validation of an ECG removal procedure for EMGdi power spectrum analysis. Appl. Physiol. 60, 1073–1081 (1986)

    Article  Google Scholar 

  16. J.D.M. Drake, J.P. Callaghan, Elimination of electrocardiogram contamination from electromyogram signals: an evaluation of currently used removal techniques. Electromyogr. Kinesiol. 16, 175–187 (2006)

    Article  Google Scholar 

  17. P. Zhou, M. Lowery, R. Weir, T. Kuiken, Elimination of ECG artifacts from myoelectric prosthesis control signals developed by targeted muscle reinnervation, in 27th Conference on Engineering in Medicine and Biology, Shanghai, pp. 5276–5279 (2005)

  18. H. Liang, Z. Lin, F. Yin, Removal of ECG contamination from diaphragmatic EMG by nonlinear filtering. Nonlinear Anal. 63, 745–753 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Hu, J. Mak, H. Liu, K.D.K. Luk, ECG cancellation for surface electromyography measurement using independent component analysis, in International Symposium on Circuits and Systems, New Orleans, pp. 3235–3238 (2007)

  20. C.K.S. Vijila, C.E.S. Kumar, Cancellation of ECG in electromyogram using back propagation network, in International Conference on Advances in Recent Technologies in Communication and Computing, Kottayam, Kerala, pp. 630–634 (2009)

  21. C.K.S. Vijila, C.E.S. Kumar, Interference cancellation in EMG signal using ANFIS. Recent Trends in Eng. 2, 244–248 (2009)

    Google Scholar 

  22. M. Redfern, R. Hughes, D. Chaffin, High-pass filtering to remove electrocardiographic interference from torso EMG recordings. Clin. Biomech. 8, 44–48 (1993)

    Article  Google Scholar 

  23. T.W. Schweitzer, J.W. Fitzgerald, J.A. Bowden, P. Lynne-Davies, Spectral analysis of human inspiratory diaphragmatic electromyograms. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 46(1), 152–165 (1979)

    Google Scholar 

  24. N.D. Panagiotacopulos, J.S. Lee, M.H. Pope, K. Friesen, Evaluation of EMG signals from rehabilitated patients with lower back pain using wavelets. J. Electromyogr. Kinesiol. 8(4), 269–278 (1998)

    Article  Google Scholar 

  25. C. Roberts, A. Bartolo, R. Dzwonczyk, E. Goldman, Analysis of diaphragm EMG signals: comparison of gating vs. subtraction for removal of ECG contamination. J. Appl. Physiol. 80(6), 1892–1902 (1996)

    Google Scholar 

  26. S. Levine, J. Gillen, P. Weiser, M. Gillen, E. Kwatny, Description and validation of an ECG removal procedure for EMGdi power spectrum analysis. J. Appl. Physiol. 60, 1073–1081 (1986)

    Article  Google Scholar 

  27. G. Lu, J.-S. Brittain, P. Holland, J. Yianni, A.L. Green, J.F. Stein, T.Z. Aziz, S. Wang, RemovingECG noise from surface EMG signals using adaptive filtering. Neurosci. Lett. 462(1), 14–19 (2009)

    Article  Google Scholar 

  28. J. Drake, J. Callaghan, Elimination of electrocardiogram contamination from electromyogram signals: an evaluation of currently used removal techniques. J. Electromyogr. Kinesiol. 16(2), 175–187 (2006)

    Article  Google Scholar 

  29. S. Sanei, T.K.M. Lee, V. Abolghasemi, A new adaptive line enhancer based on singular spectrum analysis. IEEE Trans. Biomed. Eng. 59(2), 428–434 (2012)

    Article  Google Scholar 

  30. I. Christov, I. Daskalov, Filtering of electromyogram artifacts from the electrocardiogram. Med. Eng. Phys. 21(10), 731–736 (1999)

    Article  Google Scholar 

  31. M. Nitzken, N. Bajaj, S. Aslan, Local wavelet-based filtering of electromyographic signals to eliminate the electrocardiographic-induced artifacts in patients with spinal cord injury. J. Biomed. Sci. Eng. 6(7B), 1–32 (2013)

    Article  Google Scholar 

  32. B. Azzerboni, Neural-ICA and wavelet transform for artifacts removal in surface EMG, in Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 4, pp. 3223–3228 (2004)

  33. J.N.F. Mak, Y. Hu, K.D.K. Luk, An automated ECG-artifact removal method for trunk muscle surface EMG recordings. Med. Eng. Phys. 32(8), 840–848 (2010)

    Article  Google Scholar 

  34. X. Ren, Z. Yan, Z. Wang, X. Hu, Noise reduction based on ICA decomposition and wavelet transform for the extraction of motor unit action potentials. J. Neurosci. Methods 158(2), 313–322 (2006)

    Article  Google Scholar 

  35. N. Willigenburg, A. Daffertshofer, Removing ECG contamination from EMG recordings: a comparison of ICA-based and other filtering procedures. J. Eectromyogr. Kinesiol. 22(3), 485–493 (2012)

    Article  Google Scholar 

  36. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 454(March (1971)), 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(01), 1–41 (2009)

    Article  Google Scholar 

  38. N. Miljković, N. Popović, O. Djordjević, L. Konstantinović, T.B. Šekara, ECG artifact cancellation in surface EMG signals by fractional order calculus application. J. Comput. Methods Programs Biomed. 140, 256–264 (2017)

    Google Scholar 

  39. M. Niegowski, M. Zivanovic, Wavelet-based unsupervised learning method for electrocardiogram suppression in surface electromyograms. Med. Eng. Phys. 38, 248–256 (2016)

    Article  Google Scholar 

  40. J. Barrios-Muriel, F. Romeroa, F.J. Alonsoa, K. Gianikellisb, A simple SSA-based de-noising technique to remove ECG interference in EMG signals. Biomed. Signal Process. Control 30, 117–126 (2016)

    Article  Google Scholar 

  41. S. Abbaspour, M. Lindén, H. Gholamhosseini, ECG artifact removal from surface EMG signal using an automated method based on wavelet-ICA, in: Studies in Health Technology and Informatics, vol. 211. pHealth, pp. 91–97 (2015)

  42. F.R. Hasmin et. al., Wavelet based motion artefact removal for ECG Signals, in IEEE EMBS International Conference on Biomedical Engineering and Science (IECBES). IEEE, Langkawi (2012)

  43. S. Mallat, A Wavelet Tour of Signal Processing, 2nd edn. (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  44. S. Abbaspour, A. Fallah, M. Linden, H. Gholamhosseini, A novel approach for removing ECG interferences from surface EMG signals using a combined ANFIS and wavelet. J. Electromyograph. Kinesiol. 26, 52–59 (2016)

    Article  Google Scholar 

  45. J.S.R. Jang, ANFIS: adaptive network based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–683 (1993)

    Article  Google Scholar 

  46. I. Mukherjee, P.K. Ray, A review of optimization techniques in metal cutting processes. Comput. Ind. Eng. 50(1–2), 15–34 (2006)

    Article  Google Scholar 

  47. A.M. Zain et al., Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert Syst. Appl. 37, 4650–4659 (2010)

    Article  Google Scholar 

  48. F. Musharavati, A.S.M. Hamouda, Modified genetic algorithms for manufacturing process planning in multiple parts manufacturing lines. Expert Syst. Appl. 38, 10770–10779 (2011)

    Article  Google Scholar 

  49. S. Abbaspour, H. Gholamhosseini, M. Linden, Evaluation of wavelet based methods in removing motion artifact from ECG signal, in 16th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics. Sweden: Goutenburg, pp. 1–4 (2014)

  50. M. Valipour, Global experience on irrigation management under different scenarios. J. Water Land Dev. 32(I–Iii), 95–102 (2017)

    Google Scholar 

  51. M. Valipour, A.A. Montazar, An evaluation of SWDC and WinSRFR models to optimize of infiltration parameters in furrow irrigation. American Journal of Scientific Research Issue 69, 128–142 (2012)

    Google Scholar 

  52. M. Valipour, Variations of land use and irrigation for next decades under different scenarios. Irriga, Botucatu, Edição Especial, Irrigação, pp. 262–288, 2016

  53. M. Valipour, How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? Agriculture 6(53), 1–9 (2016)

    Google Scholar 

  54. M. Valipour, M.E. Banihabib, S.M.R. Behbahani, Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476, 433–441 (2013)

    Article  Google Scholar 

  55. D.P. Vieroa, M. Valipour, Modeling anisotropy in free-surface overland and shallow inundation flows. Adv. Water Resour. 104, 1–14 (2017)

    Article  Google Scholar 

  56. J. Tealman, S. Van Huffel, A. Spaepen, Wavelet-independent component analysis to remove electrocardiography contamination in surface electromyography, in 29th International Conference on Engineering in Medicine and Biology Society, United States (2007)

  57. Y. Hu, J. Mak, H. Liu, K.D.K. Luk, ECG cancellation for surface electromyography measurement using independent component analysis, in International Symposium on Circuits and Systems. IEEE, New Orleans (2007)

  58. J. Taelman, B. Mijovic, S. Van Huffel, S. Devuyst, T. Dutoit, ECG artifact removal from surface EMG signals by combining emperical mode decomposition and independent component analysis, in International Conference on Bio-inspired Systems and Signal Processing. Rome, Italy (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusmita Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, M., Basu, M., Pattanayak, D.N. et al. A Simple Network to Remove Interference in Surface EMG Signal from Single Gene Affected Phenylketonuria Patients for Proper Diagnosis. J. Inst. Eng. India Ser. B 99, 109–123 (2018). https://doi.org/10.1007/s40031-017-0301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-017-0301-9

Keywords

Navigation