Skip to main content
Log in

Design of Microstrip Rectangular Patch Antenna Using Coplanar Parasitic Rod Elements with Two-Layer Substrate Coupled Integrated Feeding Line Technique

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Microstrip antenna technology has gained significant momentum in recent times, finding widespread applications in mobile and satellite communications. These antennas offer advantages such as cost-effectiveness, low profile, and easy fabrication. However, one of the limitations of microstrip antennas is their limited bandwidth utilization. To address this drawback, a proposed methodology has been introduced to enhance the bandwidth utilization factor and overcome this limitation. The proposed method involves the design of a microstrip rectangular patch antenna using co-planar parasitic rod elements and substrate integrating feeding line technique. This approach aims to improve various aspects of the antenna’s performance, including bandwidth enhancement, front-to-back ratio improvement, loss reduction, increased quality factor, and higher power handling capability. Through the proposed method, the bandwidth ratio is significantly increased from 4 to 18%, demonstrating superior results compared to existing approaches. The simulation and 3D plot results were obtained using Ansoft HFSS (High-Frequency Structure Simulator) software, confirming the effectiveness of the proposed methodology in achieving efficient bandwidth utilization and overall antenna performance improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

My manuscript has no associated data.

Code availability

Not Applicable for current study.

References

  1. Bhaskar, V. S., Tan, E. L., Li, K. H. H., & Tse, M. S. (2018). 1 to 4 Way wideband power divider using substrate integrated waveguide and modified Wilkinson structures. In 2018 IEEE International symposium on electromagnetic compatibility and 2018 IEEE Asia-Pacific symposium on electromagnetic compatibility (EMC/APEMC), pp. 554–557.

  2. Xing, K., Liu, B., Guo, Z., Wei, X., Zhao, R., & Ma, Y. (2017). Backlobe and sidelobe suppression of a Q-band patch antenna array by using substrate integrated coaxial line feeding technique. IEEE Antennas and Wireless Propagation Letters, 16, 3043–3046.

    Article  Google Scholar 

  3. Dashti, M., & Carey, J. D. (2018). Graphene microstrip patch ultrawide band antennas for THz communications. Advanced Functional Materials, 28(11), 1705925.

    Article  Google Scholar 

  4. Kushwaha, R., Singh, V. K., Singh, N. K., Saxena, A., & Sharma, D. (2018). A compact pentagonal textile microstrip antenna for wide band application. Advances in electronics, communication, and computing (pp. 793–799). Springer.

    Chapter  Google Scholar 

  5. Patel, M., Kuchhal, P., Lal, K., Singh, V., & Patel, H. (2018). Design and performance analysis of high gain narrow band patch antenna array at X-band. Intelligent communication, control and devices (pp. 907–912). Springer.

    Chapter  Google Scholar 

  6. An, W., Li, Y., Fu, H., Ma, J., Chen, W., & Feng, B. (2018). Low-profile and wideband microstrip antenna with stable gain for 5G wireless applications. IEEE Antennas and Wireless Propagation Letters, 17(4), 621–624.

    Article  Google Scholar 

  7. Bag, B., & Sarkar, P. P. (2017). Dual band parasitic element patch antenna for LTE/WLAN applications. Journal of Electrical and Electronics Engineering, 10(1), 21.

    Google Scholar 

  8. Seok, S. (2018). Advanced packaging and manufacturing technology based on Adhesion engineering: Wafer-Level transfer packaging and fabrication techniques using interface energy control method. Springer.

    Book  Google Scholar 

  9. Gong, K., Hu, X. H., Hu, P., Deng, B. J., & Tu, Y. C. (2018). A series-fed linear substrate-integrated dielectric resonator antenna array for millimeter-wave applications. International Journal of Antennas and Propagation.

  10. Hao, Z. C., Yuan, Q., Li, B. W., & Luo, G. Q. (2018). Wideband $ W $-band substrate-integrated waveguide magnetoelectric (ME) dipole array antenna. IEEE Transactions on Antennas and Propagation, 66(6), 3195–3200.

    Article  Google Scholar 

  11. Zhang, J., Zhang, X., & Kishk, A. A. (2018). Broadband 60 GHz antennas fed by substrate integrated gap waveguides. IEEE Transactions on Antennas and Propagation., 66, 3261–3270.

    Article  Google Scholar 

  12. Lee, K. F., Luk, K. M., & Lai, H. W. (2017). Microstrip patch antennas. World Scientific.

    Book  Google Scholar 

  13. Seko, M. H., Correra, F. S., Long, S. A., & Jackson, D. R. (2017). Microstrip feeding for the excitation of a higher-order resonant mode in cylindrical dielectric resonator antennas. In Microwave and optoelectronics conference (IMOC), 2017 SBMO/IEEE MTT-S international, IEEE. pp. 1–5.

  14. Srinivasan, M., & Annadurai, S. (2017). A bandwidth analysis using broadband dual-polarization and stable-beam width slot antenna fed by U-shape microstrip line. In Electrical, instrumentation, and communication engineering (ICEICE), 2017 IEEE international conference on IEEE, pp. 1–4.

  15. Pan, B. C., & Cui, T. J. (2017). Broadband decoupling network for dual-band microstrip patch antennas. IEEE Transactions on Antennas and Propagation, 65(10), 5595–5598.

    Article  Google Scholar 

  16. Park, S. J., Shin, D. H., & Park, S. O. (2016). Low side-lobe substrate-integrated-waveguide antenna array using broadband different feeding network for millimeter-wave handset device. IEEE Transactions on Antennas and Propagation, 64(3), 923–932.

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Y., & Luk, K. M. (2015). 60-GHz substrate integrated waveguide fed cavity-backed aperture-coupled microstrip patch antenna arrays. IEEE Transactions on Antennas and Propagation, 63(3), 1075–1085.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kartha, M. M., & Jayakumar, M. (2016). Performance analysis of dielectric resonator antenna on substrate integrated waveguide cavity with dumbbell slot for wideband applications. International Journal of Control Theory and Applications, 9, 7471–7478.

    Google Scholar 

  19. Blech, M. (2015). U.S. Patent No. 9,099,787. Washington, DC: U.S. Patent and Trademark Office.

  20. Bondili, K. B., & Immadi, G. (2020). Design and analysis of high gain linear rectangular microstrip array antenna at 20.2 GHz of Ka band. Wireless Personal Communications, 111, 1563–1573. https://doi.org/10.1007/s11277-019-06940-8

    Article  Google Scholar 

  21. Verma, R. K., & Srivastava, D. K. (2020). Design and analysis of triple-band rectangular microstrip antenna loaded with notches and slots for wireless applications. Wireless Personal Communications, 114, 1847–1864. https://doi.org/10.1007/s11277-020-07452-6

    Article  Google Scholar 

  22. Tripathi, D., Srivastava, D. K., & Verma, R. K. (2021). Bandwidth enhancement of slotted rectangular wideband microstrip antenna for the application of WLAN/WiMAX. Wireless Personal Communications, 119, 1193–1207. https://doi.org/10.1007/s11277-021-08257-x

    Article  Google Scholar 

  23. Verma, R. K. (2022). Bandwidth enhancement of an inverted F-shape notch loaded rectangular microstrip patch antenna for wireless applications in L and S-BAND. Wireless Personal Communications, 125, 861–877. https://doi.org/10.1007/s11277-022-09581-6

    Article  Google Scholar 

  24. Sheik, B. A., Sridevi, P. V., & Rama Raju, P. V. (2021). A compact wideband rectangular microstrip antenna to the S and C bands applications. Wireless Personal Communications, 121, 597–619. https://doi.org/10.1007/s11277-021-08652-4

    Article  Google Scholar 

  25. Verma, R. K., Srivastava, D. K., Tripathi, R. P., et al. (2022). Wide dual band asymmetrical I-shape rectangular microstrip patch antenna for PCS/UMTS/WiMAX/IMT applications. Wireless Personal Communications, 122, 1577–1598. https://doi.org/10.1007/s11277-021-08962-7

    Article  Google Scholar 

  26. Kinagi, R., Yadahalli, R. M., & Patil, S. (2023). Compact and hexaband rectangular microstrip patch antenna for wireless applications. Wireless Personal Communications, 128, 345–363. https://doi.org/10.1007/s11277-022-09958-7

    Article  Google Scholar 

  27. Moradikordalivand, A., Rahman, T. A., Ebrahimi, S., et al. (2014). An equivalent circuit model for broadband modified rectangular microstrip-fed monopole antenna. Wireless Personal Communications, 77, 1363–1375. https://doi.org/10.1007/s11277-013-1585-y

    Article  Google Scholar 

  28. Kumar, P., Garg, A., Sharma, S. K., et al. (2023). Optimized DPMZM based RoF link against fiber impairments. Wireless Personal Communications, 128, 1859–1871. https://doi.org/10.1007/s11277-022-10023-6

    Article  Google Scholar 

  29. Singh, C., & Kumawat, G. (2020). A compact rectangular ultra-wideband microstrip patch antenna with double band notch feature at Wi-Max and WLAN. Wireless Personal Communications, 114, 2063–2077. https://doi.org/10.1007/s11277-020-07465-1

    Article  Google Scholar 

  30. Srivastava, H., Singh, A., Rajeev, A., et al. (2020). Bandwidth and gain enhancement of rectangular microstrip patch antenna (RMPA) Using slotted array technique. Wireless Personal Communications, 114, 699–709. https://doi.org/10.1007/s11277-020-07388-x

    Article  Google Scholar 

  31. Dwivedi, S. K., Kumar, M., & Tharani, L. (2018). A rectangular SRR switched slotted microstrip patch for frequency diversity application. Wireless Personal Communications, 103, 2863–2875. https://doi.org/10.1007/s11277-018-5967-z

    Article  Google Scholar 

  32. Bedra, S., Fortaki, T., Messai, A., et al. (2016). Spectral domain analysis of resonant characteristics of high Tc superconducting rectangular microstrip patch printed on isotropic or uniaxial anisotropic substrates. Wireless Personal Communications, 86, 495–511. https://doi.org/10.1007/s11277-015-2941-x

    Article  Google Scholar 

  33. Dadel, M., Srivastava, S., & Tiwary, K. P. (2016). Design of substrate integrated waveguide (SIW) fed log periodic microstrip array antennas. Wireless Personal Communications, 90, 1221–1238. https://doi.org/10.1007/s11277-016-3388-4

    Article  Google Scholar 

  34. Kanaujia, B. K., Khandelwal, M. K., Dwari, S., et al. (2016). Analysis and design of compact high gain microstrip patch antenna with defected ground structure for wireless applications. Wireless Personal Communications, 91, 661–678. https://doi.org/10.1007/s11277-016-3486-3

    Article  Google Scholar 

  35. Ansari, J. A., Kumari, K., Singh, A., et al. (2013). Ultra wideband co-planer microstrip patch antenna for wireless applications. Wireless Personal Communications, 69, 1365–1378. https://doi.org/10.1007/s11277-012-0638-y

    Article  Google Scholar 

  36. Singh, T., Ali, K. A., Chaudhary, H., et al. (2018). Design and analysis of reconfigurable microstrip antenna for cognitive radio applications. Wireless Personal Communications, 98, 2163–2185. https://doi.org/10.1007/s11277-017-4968-7

    Article  Google Scholar 

  37. Kumar, P., Shilpi, S., Kanungo, A., et al. (2022). A novel ultra wideband antenna design and parameter tuning using hybrid optimization strategy. Wireless Personal Communications, 122, 1129–1152. https://doi.org/10.1007/s11277-021-08942-x

    Article  Google Scholar 

  38. Amalraj, T. D., & Savarimuthu, R. (2019). Design and analysis of microstrip patch antenna using periodic EBG structure for C-band applications. Wireless Personal Communications, 109, 2077–2094. https://doi.org/10.1007/s11277-019-06669-4

    Article  Google Scholar 

  39. Choudhary, S., Patil, S., Verma, A., Alam, M., Kapse, V., & Kanaujia, B. (2022). Design of dual-polarized triple-band concentric annular-ring microstrip patch antenna for GPS applications. International Journal of Microwave and Wireless Technologies, 14(10), 1338–1346. https://doi.org/10.1017/S1759078721001756

    Article  Google Scholar 

  40. Choudhary, S. D., Srivastava, A., & Kumar, M. (2021). Design of single-fed dualpolarized dual-band slotted patch antenna for GPS and SDARS applications. Microwave and Optical Technology Letters, 63, 353–360. https://doi.org/10.1002/mop.32597

    Article  Google Scholar 

Download references

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Deo Choudhary.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S.D. Design of Microstrip Rectangular Patch Antenna Using Coplanar Parasitic Rod Elements with Two-Layer Substrate Coupled Integrated Feeding Line Technique. Wireless Pers Commun 131, 3073–3087 (2023). https://doi.org/10.1007/s11277-023-10602-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10602-1

Keywords

Navigation