Skip to main content
Log in

Bandwidth Enhancement of an Inverted F-Shape Notch Loaded Rectangular Microstrip Patch Antenna for Wireless Applications in L and S-band

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This article presents a compact antenna design of overall size 38.4 mm × 46.8 mm having square shape and an inverted F-shape notches. The proposed antenna of single band is resonating between 1.69 and 2.91 GHz at two frequencies 1.98 GHz and 2.56 GHz. The proposed structure of antenna design has three square shape notches at corner and an inverted F-shape notch. The loading of notches inside radiating patch increases the effective current path. Due to increase of current path, radiation of antenna increases and large bandwidth is obtained. The reflection coefficient and impedance bandwidth both are increases gradually by loading different notches in radiating patch. Parametric investigation is also performed to figure out the effect of different parameters. The proposed antenna shows fractional bandwidth of 53.04% (1220 MHz) resonating at frequencies 1.98 GHz and 2.56 GHz with good reflection coefficient of − 27.14 dB and − 21.49 dB respectively. To validate the antenna performance, the simulated results for the proposed antenna are compared with measurements taken with fabricated antenna. The operating frequency band of proposed antenna is useful in L and S-band for PCS (1.85–1.99 GHz), UMTS (1.92–2.17 GHz), WLAN (2.4–2.484 GHz), and WiMAX (2.5–2.69 GHz). A stable peak gain of 2.9–3.84 dB and antenna efficiency of 81–91% is observed in entire resonating band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Pozar, D. M. (1992). Microstrip antennas. Proceeding of the IEEE, 80(1), 79–91.

    Article  Google Scholar 

  2. Balanis, C. A. (2005). Antenna theory, analysis and design. New Jersey: Wiley.

    Google Scholar 

  3. Liu, N., Zhu, L., & Choi, W. (2017). A differential-fed microstrip patch antenna with bandwidth enhancement under operation of TM10 and TM30 modes. IEEE Transactions on Antennas and Propagation, 65(4), 1607–1614.

    Article  MathSciNet  Google Scholar 

  4. Gangwar, S. P., Gangwar, K., & Kumar, A. (2018). A compact modified hexagonal slot antenna for wideband applications. Electromagnetics, 38(6), 339–351.

    Article  Google Scholar 

  5. Gupta, N., Saxena, J., & Bhatia, K. S. (2020). Optimized metamaterial-loaded fractal antenna using modified hybrid BF-PSO algorithm. Neural Computing and Applications, 32, 7153–7169.

    Article  Google Scholar 

  6. Geetharamani, G., & Aathmanesan, T. (2020). Design of metamaterial antenna for 2.4 GHz WiFi applications. Wireless Personal Communications, 113, 2289–2300.

    Article  Google Scholar 

  7. Cheng, W. E., & Yao, S. L. (2014). An improved wideband dipole antenna for global navigation satellite system. IEEE Antennas and Wireless Propagation Letters, 13, 1305–1308.

    Article  Google Scholar 

  8. Verma, R. K., & Srivastava, D. K. (2019). Design, optimization and comparative analysis of T-shape slot loaded microstrip patch antenna using PSO. Photonic Network Communications, 38(3), 343–355.

    Article  Google Scholar 

  9. Verma, R. K., & Srivastava, D. K. (2021). Optimization and parametric analysis of slotted microstrip antenna using particle swarm optimization and curve fitting. International Journal of Circuit Theory and Applications, 49(7), 1868–1883.

    Article  Google Scholar 

  10. Gupta, A., & Chaudhary, R. (2017). A compact CPW-fed wideband metamaterial-inspired antenna for GSM, WLAN/Wi-Fi, and WiMAX applications. International Journal of Microwave and Wireless Technologies, 9(3), 567–571.

    Article  Google Scholar 

  11. Deshmukh, A. A., & Ray, K. P. (2013). Analysis of L-shaped slot cut broadband rectangular microstrip antenna. International Journal of Electronics, 100(8), 1108–1117.

    Article  Google Scholar 

  12. Gupta, N., Saxena, J., & Bhatia, K. S. (2019). Design of wideband flower-shaped microstrip patch antenna for portable applications. Wireless Personal Communications, 109, 17–30.

    Article  Google Scholar 

  13. Ansari, J. A., Yadav, N. P., Singh, P., & Mishra, A. (2010). Analysis of broadband operation of disk patch antenna with parasitic elements in single and two layer structures. International Journal of Microwave and Optical Technology, 5(3), 140–147.

    Google Scholar 

  14. Kamakshi, K., Singh, A., Aneesh, M., & Ansari, J. A. (2014). Novel design of microstrip antenna with improved bandwidth. International Journal of Microwave Science and Technology. https://doi.org/10.1155/2014/659592

    Article  Google Scholar 

  15. He, M., Ye, X., Zhou, P., Zhao, G., Zhang, C., & Sun, H. (2015). A small-size dual-feed broadband circularly polarized U-slot patch antenna. IEEE Antennas and Wireless Propagation Letters, 14, 898–901.

    Article  Google Scholar 

  16. Zhou, Z., Wei, Z., Tang, Z., & Yin, Y. (2019). Design and analysis of a wideband multiple microstrip dipole antenna with high isolation. IEEE Antennas and Wireless Propagation Letters, 18(4), 722–726.

    Article  Google Scholar 

  17. Sun, C., Wu, Z., & Bai, B. (2017). A novel compact wideband patch antenna for GNSS application. IEEE Transactions on Antennas and Propagation, 65(12), 7334–7339.

    Article  Google Scholar 

  18. Zhang, J., Lu, W. J., Li, L., Zhu, L., & Zhu, H. B. (2016). Wideband dual-mode planar endfire antenna with circular polarization. Electronics Letters, 52(12), 1000–1001.

    Article  Google Scholar 

  19. Bala, B. D., Rahim, M. K. A., & Murad, N. A. (2015). Bandwidth enhancement metamaterial antenna based on transmission line approach. Microwave and Optical Technology Letters, 57(1), 252–256.

    Article  Google Scholar 

  20. Sharma, A. K., Mittal, A., & Reddy, B. V. R. (2015). Asymmetrical π-shaped slot embedded microstrip antenna for circular polarization. Wireless Personal Communications, 83, 2069–2083.

    Article  Google Scholar 

  21. Chaturvedi, D., & Raghavan, S. (2019). A compact metamaterial-inspired antenna for WBAN application. Wireless Personal Communications, 105, 1449–1460.

    Article  Google Scholar 

  22. Dwivedi, A. K., Sharma, A., Pandey, A. K., & Singh, V. (2021). Two port circularly polarized MIMO antenna design and investigation for 5G communication systems. Wireless Personal Communications, 120, 2085–2099.

    Article  Google Scholar 

  23. Rao, Q., & Denidni, T. A. (2007). Ultra-wideband and uni-directional radiation slot antenna for multi-band wireless communication applications. Wireless Personal Communications, 41, 507–516.

    Article  Google Scholar 

  24. Gangwar, A., & Alam, M. S. (2017). A high FoM monopole antenna with asymmetrical L-slots for WiMAX and WLAN applications. Microwave and Optical Technology Letters, 60, 196–202.

    Article  Google Scholar 

  25. Zeland Software Inc. ‘IE3D’ electromagnetic simulation and optimization package, Version 14

  26. Verma, R. K., & Srivastava, D. K. (2020). Design and analysis of triple-band rectangular microstrip antenna loaded with notches and slots for wireless applications. Wireless Personal Communications, 114, 1847–1864.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Kumar Verma.

Ethics declarations

Conflict of interest

The author declares no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R.K. Bandwidth Enhancement of an Inverted F-Shape Notch Loaded Rectangular Microstrip Patch Antenna for Wireless Applications in L and S-band. Wireless Pers Commun 125, 861–877 (2022). https://doi.org/10.1007/s11277-022-09581-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09581-6

Keywords

Navigation