Skip to main content
Log in

Design and Analysis of Microstrip Patch Antenna Using Periodic EBG Structure for C-Band Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, an Electromagnetic Band Gap structured microstrip patch antenna is presented. The proposed antenna consists of a rectangular patch which is fed by way of 50 Ω microstrip line feed. This antenna occupies a totally very small area of 22 × 22 × 0.8 mm3 etched on FR4 substrate, making it suitable for C-Band applications. The substrate has relative permittivity of 4.4. The unit cells are etched on the dielectric substrate with 10 mm × 10 mm size. This antenna improves the gain and decreases the return losses. This proposed antenna has the improve gain of 8.5112 dB. The merits are miniaturized size and at comfortable structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Islam, M. T., Alam, M. S., & Yatim, B. (2015). Development of high gain multiband antenna with centre-offset copper strip-based periodic structure. Microwave and Optical Technology Letters,57(7), 1608–1614.

    Article  Google Scholar 

  2. Chatterjee, A., & Parui, S. K. (2017). Frequency-dependent directive radiation of monopole-dielectric resonator antenna using a conformal frequency selective surface. IEEE Transactions on Antennas and Propagation,10(1109), 1–7.

    Google Scholar 

  3. Dewan, R., Rahim, M. K. A., & Himdi, M. (2017). Multiband frequency-reconfigurable antenna using metamaterial structure of electromagnetic band gap. Applied Physics A,1(1007), 1–7.

    Google Scholar 

  4. Wang, Z. K., Yuan, B., & Zhang, X. H. (2016). An axial-ratio beam-width enhancement of patch-slot antenna based on EBG. Microwave and Optical Technology Letters,10(1109), 1–4.

    Google Scholar 

  5. Jaglan, N., Gupta, S. D., & Kanaujia, B. K. (2016). Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structures. Wireless Network,7(1007), 1–11.

    Google Scholar 

  6. Mittal, N., Khanna, R., & Kaur, J. (2016). Performance improvement of U-slot microstrip patch antenna for RF portable devices using electromagnetic band gap and defected ground structure. International Journal of Wireless and Microwave Technologies,3, 20–28.

    Article  Google Scholar 

  7. Yang, F., & Rahmat-Samii, Y. (2003). Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Transactions on Antennas and Propagation,51(10), 2936–2946.

    Article  Google Scholar 

  8. Liang, B., Sanz-Izquierdo, B., & Parker, E. A. (2015). A frequency and polarization reconfigurable circularly polarized antenna using active EBG structure for satellite navigation. IEEE Transactions on Antennas and Propagation,63(1), 33–40.

    Article  MathSciNet  MATH  Google Scholar 

  9. Javid Asad, M., & Farhan Shafique, M. (2015). Performance degradation of cavity backed patch antenna due to dielectric coating and its improvement. Wireless Personal Communication,5(10), 1–15.

    Google Scholar 

  10. Zhang, J., Ci, G., & Cao, Y. (2017). A wide bandgap slot fractal UC-EBG based on moore space-filling geometry for microwave application. IEEE Antennas and Wireless Propagation Letters,59(3), 493–497.

    Google Scholar 

  11. Kurra, L., Abegaonkar, M. P., & Basu, A. (2016). FSS properties of a uni-planar EBG and its application in directivity enhancement of a microstrip antenna. IEEE Antennas and Wireless Propagation Letters,5(10), 1–4.

    Google Scholar 

  12. Lamminen, A. E. I., Vimpari, A. R., & Säily, J. (2009). UC-EBG on LTCC for 60-GHz frequency band antenna applications. IEEE Transactions on Antennas and Propagation,57(10), 2904–2912.

    Article  Google Scholar 

  13. Ismail, M. F., Rahim, M. K. A., & Yusoff, M. F. M. (2017). Pattern reconfigurable antenna using electromagnetic band gap structure. Applied Physics A,10(17), 1–5.

    Google Scholar 

  14. Feresidis, A. P., Goussetis, S. W., & Vardaxoglou, J. C. (2005). Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Transactions on Antennas and Propagation,53(1), 209–215.

    Article  Google Scholar 

  15. Han, Z.-J., Song, W., & Sheng, X.-Q. (2017). Gain enhancement and RCS reduction for patch antenna by using polarization-dependent EBG surface. IEEE Antennas and Wireless Propagation Letters,10(1109), 1–4.

    Google Scholar 

  16. Li, Y., & Luk, K.-M. (2015). 60-GHz substrate integrated waveguide fed cavity-backed aperture-coupled microstrip patch antenna arrays. IEEE Transactions on Antennas and Propagation,10(11), 1–10.

    MathSciNet  MATH  Google Scholar 

  17. Rahman, M., & Stuchly, M. A. (2002). Circularly polarised patch antenna with periodic structure. IEEE Microwave Antenna Propagation,149(3), 141–146.

    Article  Google Scholar 

  18. Hashmi, R. M., & Esselle, K. P. (2015). A wideband EBG resonator antenna with an extremely small footprint area. Microwave and Optical Technology Letters,57(7), 1531–1535.

    Article  Google Scholar 

  19. Yang, X., Liu, Y., & Y, X. (2017). Isolation enhancement in patch antenna array with fractal UC-EBG structure and cross slot. IEEE Antennas and Wireless Propagation Letters,1(11), 1–4.

    Google Scholar 

  20. Kim, I., Park, B., & Lee, J.-H. (2015). Varactor diode integrated dipole-EBG base-station antenna: Enhancing tilted radiation pattern. Microwave and Optical Technology Letters,57(8), 1794–1799.

    Article  Google Scholar 

  21. Hashmi, R. M., & Esselle, K. P. (2016). A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products. IEEE Transactions on Antennas and Propagation,10(1), 1–6.

    MathSciNet  MATH  Google Scholar 

  22. Mavridou, M., & Feresidis, A. P. (2015). Tunable double-layer EBG structures and application to antenna isolation. IEEE Transactions on Antennas and Propagation,10(1), 1–11.

    MathSciNet  MATH  Google Scholar 

  23. Dadgarpour, A., Virdee, B. S., & Denidni, T. A. (2016). Mutual coupling reduction in dielectric resonator antennas using metasurface shield for 60 GHz MIMO systems. IEEE Antennas and Wireless Propagation Letters,5(1), 1–4.

    Google Scholar 

  24. Smyth, B., Barth, S., & Iyer, A. K. (2016). Dual-band microstrip patch antenna using integrated uniplanar metamaterial-based EBGs. IEEE Transactions on Antennas and Propagation,10(3), 1–8.

    Google Scholar 

  25. Ceccuzzi, S., Ponti, C., & Schettini, G. (2017). Directive EBG antennas based on lattice modes. IEEE Transactions on Antennas and Propagation,10(1), 1–9.

    MathSciNet  MATH  Google Scholar 

  26. Yang, W., Che, W., Jin, H., Feng, W., & Xue, Q. (2015). A polarization-reconfigurable dipole antenna using polarization rotation AMC structure. IEEE Transactions on Antennas and Propagation,10(5), 1–11.

    MathSciNet  MATH  Google Scholar 

  27. Bostani, A. (2017). Design, finite element analysis and implementing a reconfigurable antenna with beam switching operating at ISM band. Progress in Electromagnetics Research Letters,65(5), 69–73.

    Article  MathSciNet  Google Scholar 

  28. Li, Y., Zhang, K., & Yang, L.-A. (2017). Gain enhancement and wideband RCS reduction of a microstrip antenna using triple-band planar electromagnetic band-gap structure. Progress in Electromagnetics Research Letters,65(1), 103–108.

    Google Scholar 

  29. El Ghabzouri, M., Salhi, A. E., Anacleto, P., & Mendes, P. M. (2017). Enhanced low profile, dual-band antenna via novel electromagnetic band gap structure. Progress In Electromagnetics Research,71, 79–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taksala Devapriya Amalraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amalraj, T.D., Savarimuthu, R. Design and Analysis of Microstrip Patch Antenna Using Periodic EBG Structure for C-Band Applications. Wireless Pers Commun 109, 2077–2094 (2019). https://doi.org/10.1007/s11277-019-06669-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06669-4

Keywords

Navigation