Skip to main content
Log in

Packing stretched convex polygons in an optimized rectangle

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

A nonstandard optimized packing convex polygons in a rectangular container is considered. The shapes of the polygons are not fixed: the polygons can be compressed/stretched in certain limits along the principal axes, but their areas remain constant. The polygons must be placed completely in the container without overlapping under free translations and rotations. The objective is to define the shapes of the polygons and their locations to minimize the height of the container. Non-overlapping and containment conditions for the stretched polygons are presented using the phi-function technique. The overall packing problem is formulated in the form of a nonconvex nonlinear programming problem. A solution approach is proposed based on the multistart strategy. To illustrate the main steps of the solution technique a numerical example is provided. Directions for future research are discussed. Our interest in this class of packing problems is motivated by studying properties of porous media under external force. Elements of porous media can be deformed under pressure, but the mass of each particle is conserved. In two-dimensional case this corresponds to the area conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yagiura, M., Umetani, S., Imahori, S., & Hu, Y. (2024). Cutting and packing problems. From the perspective of combinatorial optimization. Springer. ISBN 978-4-431-55290-1

  2. Fischer, A., & Scheithauer, G. (2015). Cutting and packing problems with placement constraints. In G. Fasano & J. Pinter (Eds.), Optimized packings with applications. Springer optimization and applications (Vol. 105, pp. 119–156). Springer.

    Chapter  Google Scholar 

  3. Kallrath, J. (2021). Cutting and packing beyond and within mathematical programming. Business optimisation using mathematical programming. Springer. https://doi.org/10.1007/978-3-030-73237-0_15

    Book  Google Scholar 

  4. Jiang, J., Garikipati, K., & Rudraraju, S. (2019). A diffuse interface framework for modeling the evolution of multi-cell aggregates as a soft packing problem driven by the growth and division of cells. Bulletin of Mathematical Biology, 81, 3282–3300.

    Article  MathSciNet  Google Scholar 

  5. Yuan, Q., Li, Z., Gao, Y., Wang, Y. H., & Li, X. (2019). Local responses in 2D assemblies of elliptical rods when subjected to biaxial shearing. Acta Geotechnica, 14, 1685–1697.

    Article  Google Scholar 

  6. Chen, Y., Yuan, M., Wang, Z., Zhao, Y., Li, J., Hu, B., & Xia, C. (2021). Structural characterization and statistical properties of jammed soft ellipsoid packing. Soft Matter, 17, 2963. https://doi.org/10.1039/d0sm01699c

    Article  Google Scholar 

  7. Young, F. Y., Chris, C. N., ChuLuk, W. S., & Wong, Y. C. (2001). Handling soft modules in general nonslicing floorplan using Lagrangian relaxation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 20(5), 687–692.

    Article  Google Scholar 

  8. Ji, P., Hea, K., Jina, Y., Lana, H., & Li, C. (2017). An iterative merging algorithm for soft rectangle packing and its extension for application of fixed-outline floorplanning of soft modules. Computers and Operations Research, 86, 110–123.

    Article  MathSciNet  Google Scholar 

  9. Bui, Q. T., Vidal, T., & Hà, M. H. (2019). On three soft rectangle packing problems with guillotine constraints. Journal of Global Optimization, 74, 45–62. https://doi.org/10.1007/s10898-019-00741-w

    Article  MathSciNet  Google Scholar 

  10. Zuo, Q. et al. (2022). The three-dimensional bin packing problem for deformable items. In IEEE international conference on industrial engineering and engineering management (IEEM), Kuala Lumpur, Malaysia (pp. 0911–0918). https://doi.org/10.1109/IEEM55944.2022.9989600

  11. Nagamochi, H. (2006). Packing soft rectangles. International Journal of Foundations of Computer Science, 17(5), 1165–1178.

    Article  MathSciNet  Google Scholar 

  12. Ibaraki, T., & Nakamura, K. (2006). Packing problems with soft rectangles. In: F. Almeida et al. (Eds.), Hybrid metaheuristics. HM 2006. Lecture Notes in Computer Science (Vol. 4030, pp. 13–27). Springer. https://doi.org/10.1007/11890584_2

  13. Lewis, B. A., & Robinson, J. S. (1978). Triangulation of planar regions with applications. The Computer Journal, 21(4), 324–332. https://doi.org/10.1093/comjnl/21.4.324

    Article  Google Scholar 

  14. Blunt, M. (2017). Multiphase flow in permeable media: A pore-scale perspective. Cambridge University Press. https://doi.org/10.1017/9781316145098

    Book  Google Scholar 

  15. Eichheimer, P., Thielmann, M., Popov, A., Golabek, G. J., Fujita, W., Kottwitz, M. O., & Kaus, B. J. P. (2019). Pore-scale permeability prediction for Newtonian and non-Newtonian fluids. Solid Earth, 10(5), 1717–1731. https://doi.org/10.5194/se-10-1717-2019

    Article  Google Scholar 

  16. Dong, X., Liu, H., Hou, J., Zhang, Z., & Chen, Z. (2015). Multi-thermal fluid assisted gravity drainage process: A new improved-oil-recovery technique for thick heavy oil reservoir. Journal of Petroleum Science and Engineering, 133, 1–11. https://doi.org/10.1016/j.petrol.2015.05.001

    Article  Google Scholar 

  17. Al-Nakhli, A., Tariq, Z., Mahmoud, M., Abdulraheem, A., & Al Shehri, D. (2019). A novel thermochemical fracturing approach to reduce fracturing pressure of high strength rocks. In Abu Dhabi international petroleum exhibition and conference. SPE-197593-MS. https://doi.org/10.2118/197593-MS

  18. Allgower, E. L., & Schmidt, P. H. (1986). Computing volumes of polyhedra. Mathematics of Computation, 46(173), 171–174.

    Article  MathSciNet  Google Scholar 

  19. Braden, B. (1986). The Surveyor’s Area Formula. The College Mathematics Journal, 17(4), 326–337.

    Article  Google Scholar 

  20. https://www.mathwords.com/a/area_convex_polygon.htm

  21. https://math.ucr.edu/~res/math133/affine-convex.pdf

  22. Kallrath, J., Romanova, T., Pankratov, A., Litvinchev, I., & Infante, L. (2023). Packing convex polygons into minimum-perimeter convex hulls. Journal of Global Optimization, 85(1), 39–59. https://doi.org/10.1007/s10898-022-01194-4

    Article  MathSciNet  Google Scholar 

  23. Stoyan, Yu., Pankratov, A., & Romanova, T. (2016). Cutting and packing problems for irregular objects with continuous rotations: Mathematical modeling and nonlinear optimization. Journal of the Operational Research Society, 67(5), 786–800. https://doi.org/10.1057/jors.2015.94

    Article  Google Scholar 

  24. Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., & Marmolejo, J. A. (2019). Decomposition algorithm for irregular placement problems. In P. Vasant, I. Zelinka, & G. W. Weber (Eds.), Intelligent computing and optimization. ICO 2019. Advances in intelligent systems and computing (Vol. 1072, pp. 214–221). Springer. https://doi.org/10.1007/978-3-030-33585-4_21

    Chapter  Google Scholar 

  25. Wachter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57. https://doi.org/10.1007/s10107-004-0559-y

    Article  MathSciNet  Google Scholar 

  26. Litvinchev, I., Infante, L., Romanova, T., Martinez-Noa, A., & Gutierrez, L. (2024). Optimized packing soft convex polygons. In J. A. Marmolejo-Saucedo, R. Rodríguez-Aguilar, P. Vasant, I. Litvinchev, & B. M. Retana-Blanco (Eds.), Computer science and engineering in health services. COMPSE 2022 EAI/Springer innovations in communication and computing (pp. 89–97). Springer. https://doi.org/10.1007/978-3-031-34750-4_7

    Chapter  Google Scholar 

  27. Kropat, E., Türkay, M., & Weber, G. W. (2020). Introduction to the special issue on fuzzy analytics and stochastic methods in neurosciences. IEEE Transactions on Fuzzy Systems, 28(1), 1–4. https://doi.org/10.1109/TFUZZ.2019.2959462

    Article  Google Scholar 

  28. Tikidji-Hamburyan, R. A., Kropat, E., & Weber, G. W. (2022). Preface: Operations research in neuroscience III. Annals of operations research, 312(2), 1143–1145. https://doi.org/10.1007/s10479-022-04697-1

    Article  Google Scholar 

  29. Purutçuoğlu, V., Weber, G. W., & Farnoudkia, H. (Eds.). (2022). Operations research: New paradigms and emerging applications. CRC Press. https://doi.org/10.1201/9781003324508

    Book  Google Scholar 

  30. Ewertowski, T., Güldoğuş, B. Ç., Kuter, S., Akyüz, S., Weber, G. W., Sadłowska-Wrzesińska, J., & Racek, E. (2023). The use of machine learning techniques for assessing the potential of organizational resilience. Central European Journal of Operations Research. https://doi.org/10.1007/s10100-023-00875-z

    Article  Google Scholar 

  31. Romanova, T., Litvinchev, I., & Pankratov, A. (2020). Packing ellipsoids in an optimized cylinder. European Journal of Operational Research, 285(2), 429–443. https://doi.org/10.1016/j.ejor.2020.01.051

    Article  MathSciNet  Google Scholar 

  32. Romanova, T., Bennell, J., Stoyan, Y., & Pankratov, A. (2018). Packing of concave polyhedra with continuous rotations using nonlinear optimization. European Journal of Operational Research, 268(1), 37–53. https://doi.org/10.1016/j.ejor.2018.01.025

    Article  MathSciNet  Google Scholar 

  33. Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Kravchenko, O., Duryagina, Z., Melashenko, O., & Chugai, A. (2023). Optimized packing soft ellipses. In M. S. Manshahia, I. S. Litvinchev, G. W. Weber, J. Thomas, & P. Vasan (Eds.), Human-assisted intelligent computing: Modelling, simulations and applications (pp. 9-1–9-16). IOP Publishing. https://doi.org/10.1088/978-0-7503-4801-0ch9

    Chapter  Google Scholar 

  34. Fischer, A., Litvinchev, I., Romanova, T., Stetsyuk, P., & Yaskov, G. (2023). Quasi-packing different spheres with ratio conditions in a spherical container. Mathematics. https://doi.org/10.3390/math11092033

    Article  Google Scholar 

  35. Scheithauer, U., Romanova, T., Pankratov, O., Schwarzer-Fischer, E., Schwentenwein, M., Ertl, F., & Fischer, A. (2023). Potentials of numerical methods for increasing the productivity of additive manufacturing processes. Ceramics, 6(1), 630–650. https://doi.org/10.3390/ceramics6010038

    Article  Google Scholar 

  36. Duriagina, Z., Pankratov, A., Romanova, T., Litvinchev, I., Bennell, J., Lemishka, I., & Maximov, S. (2023). Optimized packing titanium alloy powder particles. Computation. https://doi.org/10.3390/computation11020022

    Article  Google Scholar 

  37. Duriagina, Z., Lemishka, I., Litvinchev, I., Marmolejo, J. A., Pankratov, A., Romanova, T., & Yaskov, G. (2021). Optimized filling of a given cuboid with spherical powders for additive manufacturing. Journal of the Operations Research Society of China, 9(4), 853–868. https://doi.org/10.1007/s40305-020-00314-9

    Article  MathSciNet  Google Scholar 

  38. Pankratov, A., Romanova, T., & Litvinchev, I. (2020). Packing ellipses in an optimized rectangular container. Wireless Networks, 26(7), 4869–4879. https://doi.org/10.1007/s11276-018-1890-1

    Article  Google Scholar 

  39. Fasano, G., & Pintér, J. D. (2019). Modeling and optimization in space engineering, (SOIA, 144). Springer.

    Book  Google Scholar 

  40. Leao, A. S., Toledo, F. M. B., Oliveira, J. F., Carravilla, M. A., & Alvarez-Valdés, R. (2020). Irregular packing problems: A review of mathematical models. European Journal of Operational Research, 282, 803–822. https://doi.org/10.1016/j.ejor.2019.04.045

    Article  MathSciNet  Google Scholar 

  41. Li, J., An, X., Wang, J., Zhao, H., Zou, R., Dong, K., & Gou, D. (2020). Experimental study on 3D vibrated packing densification of mono-sized dodecahedral particles. Powder Technology, 367, 703–712. https://doi.org/10.1016/j.powtec.2020.04.020

    Article  Google Scholar 

  42. Litvinchev, I., & Ozuna, L. (2014). Integer programming formulations for approximate packing circles in a rectangular container. Mathematical Problems in Engineering, 2014, 317697. https://doi.org/10.1155/2014/317697

    Article  MathSciNet  Google Scholar 

  43. Litvinchev, I., & Ozuna, L. (2012). Lagrangian bounds and a heuristic for the two-stage capacitated facility location problem. International Journal of Energy Optimization and Engineering, 1(1), 60–72. https://doi.org/10.4018/ijeoe.2012010104

    Article  Google Scholar 

  44. Litvinchev, I. (2007). Refinement of Lagrangian bounds in optimization problems. Computational Mathematics and Mathematical Physics, 47(7), 1101–1108. https://doi.org/10.1134/S0965542507070032

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the British Academy (Grant #100072) and the Volkswagen Foundation (Grant #97775).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetyana Romanova.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Data availability

Data is available under demand.

Consent for publication

All authors have agreed and given their consent for submission of this paper to Wireless Networks.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennell, J., Litvinchev, I., Pankratov, A. et al. Packing stretched convex polygons in an optimized rectangle. Wireless Netw (2024). https://doi.org/10.1007/s11276-023-03642-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-023-03642-9

Keywords

Navigation