Skip to main content

Decomposition Algorithm for Irregular Placement Problems

  • Conference paper
  • First Online:
Intelligent Computing and Optimization (ICO 2019)

Abstract

A placement problem of irregular 2D&3D objects in a domain (container) of minimum area (volume), that related to the field of Packing and Cutting problems is considered. Placement objects may be continuously translated and rotated. A general nonlinear programming model of the problem is presented employing the phi-function technique. We propose a decomposition algorithm that generalizes previously published compaction algorithms of searching for local optimal solutions for some packing and cutting problems. Our decomposition algorithm reduces the optimization placement problem to a sequence of nonlinear programming subproblems of considerably smaller dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wascher, G., Hauner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183(3), 1109–1130 (2007)

    Article  Google Scholar 

  2. Chazelle, B., Edelsbrunner, H., Guibas, L.J.: The complexity of cutting complexes. Discrete Computat. Geom. 4(2), 139–181 (1989)

    Article  MathSciNet  Google Scholar 

  3. Leao, A.A.S., Toledo, F.M.B., Oliveira, J.F., Carravilla, M., Alvarez-Valdés, R.: Irregular packing problems: a review of mathematical models. Eur. J. Oper. Res. (2019) https://doi.org/10.1016/j.ejor.2019.04.045

  4. Litvinchev, I., Infante, L., Ozuna, L.: Approximate packing: integer programming models, valid inequalities and nesting. In: Fasano, G., Pinter, J.D., (eds.) Optimized Packings and their Applications. Springer Optimization and its Applications, vol. 105, pp. 117–135 (2015)

    Chapter  Google Scholar 

  5. Kallrath, J., Rebennack, S.: Cutting ellipses from area-minimizing rectangles. J. Global Optim. 59(2), 405–437 (2014)

    Article  MathSciNet  Google Scholar 

  6. Birgin, E.G., Lobato, R.D., Martinez, J.M.: Packing ellipsoids by nonlinear optimization. J. Global Optim. 65(4), 709–743 (2016)

    Article  MathSciNet  Google Scholar 

  7. Litvinchev, I., Infante, L., Ozuna, L.: Packing circular like objects in a rectangular container. J. Comput. Syst. Sci. Int. 54(2), 259–267 (2015)

    Article  MathSciNet  Google Scholar 

  8. Torres, R., Marmolejo, J.A., Litvinchev, I.: Binary monkey algorithm for approximate packing non-congruent circles in a rectangular container. Wirel. Netw. (2018). https://doi.org/10.1007/s11276-018-1869-y

    Article  Google Scholar 

  9. Alt, H., Berg, M., Knauer, C.: Approximating minimum-area rectangular and convex containers for packing convex polygons. J. Comput. Geom. 8(1), 1–10 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Jones, D.: A fully general, exact algorithm for nesting irregular shapes. J. Global Optim. 59, 367–404 (2013)

    Article  MathSciNet  Google Scholar 

  11. Alvarez-Valdes, R., Martinez, A., Tamarit, J.: A branch and bound algorithm for cutting and packing irregularly shaped pieces. Int. J. Prod. Econ. 145, 463–477 (2013)

    Article  Google Scholar 

  12. Baldacci, R., Boschetti, M.A., Ganovelli, M., Maniezzo, V.: Algorithms for nesting with defects. Discrete Appl. Math. 163(Part 1), 17–33 (2014)

    Article  MathSciNet  Google Scholar 

  13. Cherri, L.H., Cherri, A.C., Soler, E.M.: Mixed integer quadratically-constrained programming model to solve the irregular strip packing problem with continuous rotations. J. Global Optim. 72, 89–107 (2018)

    Article  MathSciNet  Google Scholar 

  14. Leao, A.A., Toledo, F.M., Oliveira, J.F., Carravilla, M.A.: A semi-continuous MIP model for the irregular strip packing problem. Int. J. Prod. Res. 54, 712–721 (2016)

    Article  Google Scholar 

  15. Peralta, J., Andretta, M., Oliveira, J.F.: Solving irregular strip packing problems with free rotations using separations lines. Pesquisa Operacional 38, 195–214 (2018)

    Article  Google Scholar 

  16. Scheithauer, G.: Introduction to Cutting and Packing Optimization - Problems, Modeling Approaches. Solution Methods. International Series in Operations Research & Management Science, 1st edn. Springer, Berlin (2018)

    Book  Google Scholar 

  17. Wang, A., Hanselman, C.L., Gounaris, C.E.: A customized branch-and-bound approach for irregular shape nesting. J. Global Optim. 71, 935–955 (2018)

    Article  MathSciNet  Google Scholar 

  18. Fasano, G.: Solving Non-standard Packing Problems by Global Optimization and Heuristics. Springer Briefs in Optimization. Springer, New York (2014)

    Book  Google Scholar 

  19. Fasano, G., Pintér, J.D.: Optimized Packings and their Applications. Springer Optimization and its Applications. Springer, New York (2015)

    Book  Google Scholar 

  20. Youn-Kyoung, J., Sang, D.N.: Intelligent 3D packing using a grouping algorithm for automotive container engineering. J. Comp. Design Eng. 1(2), 140–151 (2014)

    Article  Google Scholar 

  21. Stetsyuk, P., Romanova, T., Scheithauer, G.: On the global minimum in a balanced circular packing problem. Optim. Lett. 10, 347–1360 (2016)

    Article  MathSciNet  Google Scholar 

  22. Stoyan, Yu., Romanova, T.: Mathematical models of placement optimization: two- and three-dimensional problems and applications. In: Fasano, G., Pinter, J.D. (eds.) Modeling and Optimization in Space Engineering. Springer Optimization and Its Applications, vol. 73, pp. 363–388. Springer, Berlin (2012)

    Chapter  Google Scholar 

  23. Stoyan, Yu., Pankratov, A., Romanova, T.: Quasi-phi-functions and optimal packing of ellipses. J. Global Optim. 65(2), 283–307 (2016)

    Article  MathSciNet  Google Scholar 

  24. Stoyan, Yu., Pankratov, A., Romanova, T., Chugay, A.: Optimized object packings using quasi-phi-functions. In: Fasano, G., Pinter, J.D. (eds.) Optimized Packings and their Applications. Springer Optimization and Its Applications, vol. 105, pp. 265–291. Springer, Berlin (2015)

    Chapter  Google Scholar 

  25. Pankratov, A., Romanova, T., Litvinchev, I.: Packing ellipses in an optimized rectangular container. Wirel. Netw. (2018). https://doi.org/10.1007/s11276-018-1890-1

    Article  MATH  Google Scholar 

  26. Stoyan, Y., Yaskov, G.: Packing equal circles into a circle with circular prohibited areas. Int. J. Comput. Math. 89(10), 355–1369 (2012)

    Article  MathSciNet  Google Scholar 

  27. Stoyan, Yu., Pankratov, A., Romanova, T.: Cutting and packing problems for irregular objects with continuous rotations: mathematical modeling and nonlinear optimization. J. Oper. Res. Soc. 67(5), 786–800 (2016)

    Article  Google Scholar 

  28. Romanova, T., Bennell, J., Stoyan, Y., Pankratov, A.: Packing of concave polyhedra with continuous rotations using nonlinear optimization. Eur. J. Oper. Res. 268, 37–53 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Romanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Marmolejo, J.A. (2020). Decomposition Algorithm for Irregular Placement Problems. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing and Optimization. ICO 2019. Advances in Intelligent Systems and Computing, vol 1072. Springer, Cham. https://doi.org/10.1007/978-3-030-33585-4_21

Download citation

Publish with us

Policies and ethics