Skip to main content
Log in

Optimized Filling of a Given Cuboid with Spherical Powders for Additive Manufacturing

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

In additive manufacturing (also known as 3D printing), a layer-by-layer buildup process is used for manufacturing parts. Modern laser 3D printers can work with various materials including metal powders. In particular, mixing various-sized spherical powders of titanium alloys is considered most promising for the aerospace industry. To achieve desired mechanical properties of the final product, it is necessary to maintain a certain proportional ratio between different powder fractions. In this paper, a modeling approach for filling up a rectangular 3D volume by unequal spheres in a layer-by-layer manner is proposed. A relative number of spheres of a given radius (relative frequency) are known and have to be fulfilled in the final packing. A fast heuristic has been developed to solve this special packing problem. Numerical results are compared with experimental findings for titanium alloy spherical powders. The relative frequencies obtained by using the imposed algorithm are very close to those obtained by the experiment. This provides an opportunity for using a cheap numerical modeling instead of expensive experimental study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qian, M., Froes, F.H.: Titanium powder metallurgy: science, technology and applications. Butterworth-Heinemann, Oxford (2015)

    Google Scholar 

  2. Zou, L., Liu, X., Xie, H., Mao, X.: High-quality Ti–6Al–4 V alloy powder prepared by plasma rotating electrode process and its processability in hot isostatic pressing. In: Han, Y. (ed.) High Performance Structural Materials. CMC 2017, pp. 61–67. Springer, Singapore (2018)

    Google Scholar 

  3. Duriagina, Z., Trostyanchyn, A., Lemishka, I., Skrebtsov, A., Ovchinnikov, O.: The influence of chemical-thermal treatment on granulometric characteristics of titanium sponge powder. Ukr J Mech. Eng. Mater. Sci. 3, 73–80 (2017)

    Google Scholar 

  4. Duriagina, Z.A., Lemishka, I.A., Trostianchyn, A.M., et al.: The effect of morphology and particle-size distribution of VT20 titanium alloy powders on the mechanical properties of deposited coatings. Powder Metall. Met. Ceram. 57, 697–702 (2019)

    Google Scholar 

  5. Duryahina, Z.A., Kovbasyuk, T.M., Bespalov, S.A., et al.: Micromechanical and electrophysical properties of Al2O3 nanostructured dielectric coatings on plane heating elements. Mater. Sci. 52, 50–55 (2016)

    Google Scholar 

  6. Tsmots, I., Teslyuk, V., Teslyuk, T., Ihnatyev, I.: Basic components of neuronetworks with parallel vertical group data real-time processing. In: Shakhovska, N., Stepashko, V. (eds.) Advances in intelligent systems and computing II. CSIT 2017. Advances in Intelligent Systems and Computing, vol. 689, pp. 558–576. Springer, Cham (2018)

    Google Scholar 

  7. Tkachenko, R., Doroshenko, A., Izonin, I., Tsymbal, Y., Havrysh, B.: Imbalance data classification via neural-like structures of geometric transformations model: local and global approaches. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, vol. 754, pp. 112–122. Springer, Cham (2019)

    Google Scholar 

  8. Duriagina, Z.A., Tkachenko, R.O., Trostianchyn, A.M., Lemishka, I.A., Kovalchuk, A.M., Kulyk, V.V., Kovbasyuk, T.M.: Determination of the best microstructure and titanium alloy powders properties using neural network. J. Achiev. Mater. Manuf. Eng. 1(87), 25–31 (2018)

    Google Scholar 

  9. Tkachenko, R., Duriagina, Z., Lemishka, I., Izonin, I., Trostianchyn, A.: Development of machine learning method of titanium alloy properties identification in additive technologies. Eastern-Eur J Enterp Technol 3(12), 23–31 (2018)

    Google Scholar 

  10. Fang, T.T., Murty, K.L.: Grain-size-dependent creep of stainless steel. Mater. Sci. Eng. 61(3), L7–L10 (1983)

    Google Scholar 

  11. Bennell, J.A., Oliveira, J.F.: A tutorial in irregular shape packing problem. J. Oper. Res. Soc. 60, S93–S105 (2009)

    MATH  Google Scholar 

  12. Stetsyuk, P., Romanova, T., Scheithauer, G.: On the global minimum in a balanced circular packing problem. Optim. Lett. 10, 1347–1360 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Torres, R., Marmolejo, J.A., Litvinchev, I.: Binary monkey algorithm for approximate packing non-congruent circles in a rectangular container. Wirel Netw. (2018). https://doi.org/10.1007/s11276-018-1869-y

    Article  Google Scholar 

  14. Litvinchev, I., Infante, L., Ozuna, L.: Packing circular-like objects in a rectangular container. Comput. Syst. Sci. Int. 54, 259–267 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Martinez, F., Murillo-Suarez, A.: Packing algorithm inspired by gravitational and electromagnetic effects. Wirel Netw. (2019). https://doi.org/10.1007/s11276-019-02011-9

    Article  Google Scholar 

  16. Romanova, T., Pankratov, A., Litvinchev, I.: Packing ellipses in an optimized convex polygon. J. Glob. Optim. (2019). https://doi.org/10.1007/s10898-019-00777-y

    Article  MathSciNet  MATH  Google Scholar 

  17. Sollich, P., Wilding, N.B.: Crystalline phases of polydisperse spheres. Phys. Rev. Lett. 104, 118302 (2010)

    Google Scholar 

  18. Li, Y., Ji, W.: Stability and convergence analysis of a dynamics-based collective method for random sphere packing. J. Comput. Phys. 250, 373–387 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Burtseva, L., Salas, B.V., Romero, R., Werner, F.: Multi-Sized Sphere Packings: Models and Recent Approaches. Otto-von-Guericke-Universität Magdeburg (2015). https://doi.org/10.13140/2.1.4515.6169

  20. Yamada, S., Kanno, J., Miyauchi, M.: Multi-sized sphere packing in containers: optimization formula for obtaining the highest density with two different sized spheres. IPSJ Online Trans 4, 126–133 (2011)

    Google Scholar 

  21. Sutou, A., Day, Y.: Global optimization approach to unequal sphere packing problems in 3D. J. Optim. Theory Appl. 114, 671–694 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Stoyan, Y., Scheithauer, G., Yaskov, G.: Packing unequal spheres into various containers. Cybern. Syst. Anal. 52, 419–426 (2016)

    MATH  Google Scholar 

  23. Kubach, T., Bortfeldt, A., Tilli, T., Gehring, H.: Greedy algorithms for packing unequal spheres into a cuboidal strip or a cuboid. Asia-Pac. J. Oper. Res. 28(6), 739–753 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Huang, W.Q., Li, Y., Akeb, H., Li, C.M.: Greedy algorithms for packing unequal circles into a rectangular container. J. Oper. Res. Soc. 56(5), 539–548 (2005)

    MATH  Google Scholar 

  25. Akeb, H.: A look-ahead-based heuristic for packing spheres into a bin: the knapsack case. Procedia Comput. Sci. 65, 652–661 (2015)

    Google Scholar 

  26. Kallrath, J., Frey, M.M.: Minimal surface convex hulls of spheres. Vietnam J. Math. 46, 883–913 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Pintér, J.D., Kampas, F.J., Castillo, I.: Globally optimized packings of non-uniform size spheres in Rd: a computational study. Optimi. Lett. 12(3), 585–613 (2018)

    MATH  Google Scholar 

  28. Hifi, M., Yousef, L.: A local search-based method for sphere packing problems. Eur. J. Oper. Res. 274, 482–500 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Kansal, A.R., Torquato, S., Stillinger, F.H.: Computer generation of dense polydisperse sphere packings. J. Chem.Phys. 117(18), 8212–8218 (2002)

    Google Scholar 

  30. ISO 3310-1. Test sieves—technical requirements and testing—Part 1: test sieves of metal wire cloth/ISO/TC24/SC8 Test sieves, sieving and industrial screens, p. 15 (2016)

  31. Verguet, A., Messaoudi, C., Marco, S., Donnadieu, P.: An imagej tool for simplified post-treatment of TEM phase contrast images (SPCI). Micron 121, 90–98 (2019)

    Google Scholar 

  32. Walpole, R.E., Myers, R.H.: Probability and Statistics for Engineers and Scientists. Macmillan Publishing Company, New York (1985)

    MATH  Google Scholar 

  33. OriginLab. http://www.originlab.com/doc/User-Guide (date of treatment 02.01.19)

  34. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Leao, A.A.S., Toledo, F.M.B., Oliveira, J.F., Carravilla, M.A., Alvarez-Valdés, R.: Irregular packing problems: a review of mathematical models. Euro. J. Oper. Res. 282(3), 803–822 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Ma, Y., Chen, Z., Hu, W., Wang, W.: Packing irregular objects in 3D space via hybrid optimization. Comput. Gr Forum 37(5), 49–59 (2018)

    Google Scholar 

  37. Zhao, C., Jiang, L., Teo, K.L.: A hybrid chaos firefly algorithm for three-dimensional irregular packing problem. J. Ind. Manag. Optim. 16(1), 409–429 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Kovalenko, A.A., Romanova, T.E., Stetsyuk, P.I.: Balance layout problem for 3D-objects: mathematical model and solution methods. Cybern. Syst. Anal. 51, 556–565 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Stoyan, Y., Pankratov, A., Romanova, T., Chugay, A.: Optimized object packings using quasi-phi-functions. In: Fasano, G., Pintér, J. (eds.) Optimized Packings with Applications. Springer Optimization and its Applications, vol. 105, pp. 265–291. Springer, Cham (2015)

    MATH  Google Scholar 

  40. Stoyan, Y., et al.: Optimized packings in space engineering applications: Part I. In: Fasano, G., Pintér, J. (eds.) Modeling and Optimization in Space Engineering. Springer optimization and its applications, pp. 395–437. Springer, Cham (2019)

    Google Scholar 

  41. Romanova, T., Bennell, J., Stoyan, Y., Pankratov, A.: Packing of concave polyhedra with continuous rotations using nonlinear optimization. Eur. J. Oper. Res. 268, 37–53 (2018)

    MATH  Google Scholar 

  42. Pankratov, A., Romanova, T., Litvinchev, I., Marmolejo-Saucedo, J.A.: An optimized covering spheroids by spheres. Appl. Sci. 10(5), 1846 (2020)

    Google Scholar 

  43. Romanova, T., Litvinchev, I., Pankratov, A.: Packing ellipsoids in an optimized cylinder. Eur. J. Oper. Res. 285(2), 429–443 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Litvinchev, I.: Decomposition-aggregation method for convex programming problems. Optimization 22(1), 47–56 (1991)

    MathSciNet  MATH  Google Scholar 

  45. Litvinchev, I.: Refinement of Lagrangian bounds in optimization problems. Comput. Math. Math. Phys. 47, 1101–1107 (2007)

    MathSciNet  Google Scholar 

  46. Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Marmolejo, J.A.: Decomposition algorithm for irregular placement problems. In: Vasant, P., Zelinka, I., Weber, G.W. (eds.) Advances in Intelligent Systems and Computing. Intelligent Computing and Optimization. ICO 2019, vol. 1072, pp. 214–221. Springer, Berlin (2020)

    Google Scholar 

  47. Romanowska, J., Dryzek, E., Morgiel, J., Siemek, K., Kolek, Ł., Zaguła-Yavorska, M.: Microstructure and positron lifetimes of zirconium modified aluminide coatings. Arch. Civil Mech. Eng 18(4), 1150–1155 (2018)

    Google Scholar 

  48. Szala, M., Beer-Lech, K., Gancarczyk, K., Kilic, O., Pędrak, P., Özer, A., Skic, A.: Microstructural characterization of Co-Cr-Mo casting dental alloys. Adv. Sci. Technol. Res. J. 11(4), 76–82 (2017)

    Google Scholar 

  49. Yuan, Y., Liu, L., Deng, W., Li, S.: Random-packing properties of sphero polyhedra. Powder Technol. 351, 186–194 (2019)

    Google Scholar 

  50. Wei, C., Zhang, H., An, X., Jiang, S.: Influence of particle shape on microstructure and heat transfer characteristics in blast furnace raceway with CFD-DEM approach. Powder Technol. 361, 283–296 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Romanova.

Additional information

This research was partially supported by CONACYT (No. 167019). A. Pankratov and T. Romanova were partially supported by the Program for the State Priority Scientific Research and Technological (Experimental) Development of the Department of Physical and Technical Problems of Energy of the National Academy of Sciences of Ukraine (No. 6541230).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duriagina, Z., Lemishka, I., Litvinchev, I. et al. Optimized Filling of a Given Cuboid with Spherical Powders for Additive Manufacturing. J. Oper. Res. Soc. China 9, 853–868 (2021). https://doi.org/10.1007/s40305-020-00314-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-020-00314-9

Keywords

Mathematics Subject Classification

Navigation