Skip to main content
Log in

Performance analysis of overlay-based cognitive radio networks with MRC/SC and DT/AF/DF

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper studies overlay-based cognitive radio networks (ObCRNs) where transmission from a licensed transmitter (LT) to a licensed receiver (LR) is supported by an unlicensed transmitter (UT) who has its own communication to an unlicensed receiver (UR). To improve power efficiency of UT and diversity gain at UR and LR, UT operates in direct transmission (DT) or amplify-and-forward (AF) mode or decode-and-forward (DF) mode, and UR and LR combine signals with selection combining (SC) and maximum ratio combining (MRC) from LT and UT. Explicit outage probability expressions for ObCRNs with MRC/SC and DT/AF/DF are proposed to promptly rate its performance. Numerous results reveal the efficacy of the proposed solution and its flexibly-controlled performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Secrecy outage probability (SOP) is a performance indicator to evaluate the security capability of wireless communications.

  2. The current work implies that \(UR \) performs decoding \(j_u\) only if it has decoded accurately \(j_l\). The condition to guarantee if \(UR \) has recovered accurately \(j_l\) is mentioned in the successive part. As a result, the rest of the licensed interference after suppressing \(j_l\) out of \(UR \)’s received signal is neglected.

  3. Monte-Carlo simulation is widely acknowledged in open literature, e.g. [28]. Therefore, in order to keep the paper compact, its detailed description is unnecessary.

  4. Diversity order represents the slope of the performance curve.

References

  1. Tervo, O., et al. (2022). On the potential of using sub-THz frequencies for beyond 5G. In Proceedings of the EuCNC/6G Summit, Grenoble, France (pp. 37–42).

  2. Lin, K. H., et al. (2022). Intelligent directional paging framework in millimeter-wave 5G NR systems. IEEE Transactions on Wireless Communications, 21(12), 10739–10754.

    Article  Google Scholar 

  3. Torkaman, P., et al. (2022). A 5G/sub-terahertz heterogeneous communication network. IEEE Access, 10, 65572–65584.

    Article  MathSciNet  Google Scholar 

  4. Ioannou, I. I., et al. (2022). Dynamic D2D communication in 5G/6G using a distributed AI framework. IEEE Access, 10, 62772–62799.

    Article  Google Scholar 

  5. Marey, M., et al. (2022). Cognitive radios equipped with modulation and STBC recognition over coded transmissions. IEEE Wireless Communications Letters, 11(7), 1513–1517.

    Article  Google Scholar 

  6. Zhong, C., et al. (2022). Deep reinforcement learning-based optimization for IRS-assisted cognitive radio systems. IEEE Transactions on Communications, 70(6), 3849–3864.

    Article  Google Scholar 

  7. Thakur, S., et al. (2022). Secrecy performance of underlay cognitive radio networks with primary interference. IEEE Transactions on Network Science and Engineering, 9(4), 2641–2657.

    Article  Google Scholar 

  8. Singh, S. K., et al. (2022). A NOMA-enabled hybrid RIS-UAV-aided full-duplex communication system. In Proceedings of the EuCNC/6G Summit, Grenoble, France (pp. 529–534).

  9. Khan, W. U., et al., Energy efficiency optimization for backscatter enhanced NOMA cooperative V2X communications under imperfect CSI. IEEE Transactions on Intelligent Transportation Systems (to appear).

  10. Li, G., et al. (2023). QoS guaranteed power minimization and beamforming for IRS-assisted NOMA systems. IEEE Wireless Communications Letters, 12(3), 391–395.

    Article  Google Scholar 

  11. Nguyen, M. T., et al. (2022). Multi-UAV trajectory control, resource allocation, and NOMA user pairing for uplink energy minimization. IEEE IoT Journal, 9(23), 23728–23740.

    Google Scholar 

  12. Lu, B., et al. (2022). TDMA-NOMA based computation offloading for cognitive capacity harvesting networks with transmission order optimization. IEEE Transactions on Communications, 70(9), 6355–6369.

    Article  Google Scholar 

  13. 3GPP RP–170829. (2017). New Study Item proposal, study on non–orthogonal multiple access for NR, ZTE, CATT, Intel, Samsung.

  14. Solanki, S., et al. (2020). Performance analysis of piece-wise linear model of energy harvesting-based multiuser overlay spectrum sharing networks. IEEE OJ-CS, 1, 1820–1836.

    Google Scholar 

  15. Gurjar, D. S., et al. (2019). Performance of wireless powered cognitive radio sensor networks with nonlinear energy harvester. IEEE Sensors Letters, 3(8), 1–4.

    Article  Google Scholar 

  16. Agrawal, K., et al. (2020). NOMA with battery-assisted energy harvesting full-duplex relay. IEEE Transactions on Vehicular Technology, 69(11), 13952–13957.

    Article  Google Scholar 

  17. Wang, F., et al., Secure resource allocation for polarization-based non-linear energy harvesting over 5G cooperative CRNs. IEEE Wireless Communication Letter (To appear).

  18. Le-Thanh, T., et al. (2022). Effect of hardware imperfections and energy scavenging non-linearity on overlay networks in \(\kappa -\mu \) shadowed fading. The Arabian Journal for Science and Engineering, 47, 14601–14616.

    Article  Google Scholar 

  19. Le-Thanh, T., et al. (2022). Overlay networks with nonlinear energy scavenging and NOMA-assisted decoding: Security performance analysis. The Arabian Journal for Science and Engineering, 47, 14789–14807.

    Article  Google Scholar 

  20. Le-Thanh, T., et al. (2022). Adaptive processing in overlay networks for performance improvement. Wireless Network, 28, 3639–3652.

    Article  Google Scholar 

  21. Le-Thanh, T., et al. (2023). Performance evaluation of nonlinear energy scavenging overlay networks. The International Journal of Communication Systems, 36(2), 1–28.

    Article  Google Scholar 

  22. Simon, M. K., et al. (2005). Digital communication over fading channels. Wiley.

    Google Scholar 

  23. Wang, D., et al. (2020). Performance analysis and resource allocations for a WPCN with a new nonlinear energy harvester model. IEEE OJCOMS, 1, 1403–1424.

    Google Scholar 

  24. Ho-Van, K., et al. (2021). Security improvement for energy harvesting based overlay cognitive networks with jamming-assisted full-duplex destinations. IEEE Transactions on Vehicular Technology, 70(11), 12232–12237.

    Article  Google Scholar 

  25. Ngoc Hanh, D., et al. (2021). Secrecy analysis of overlay mechanism in radio frequency energy harvesting networks with jamming under Nakagami-m fading. Wireless Personal Communication, 120, 447–479.

    Article  Google Scholar 

  26. Ho-Van, K., et al. (2021). Overlay networks with jamming and energy harvesting: Security analysis. The Arabian Journal for Science and Engineering, 46, 9713–9724.

    Article  Google Scholar 

  27. Abramowitz, M., et al. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables (10th ed.). U.S. Government Printing Office.

    MATH  Google Scholar 

  28. Thomopoulos, N. T. (2013). Essentials of Monte Carlo simulation: Statistical methods for building simulation models. Springer.

    Book  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number B2023-20-08. We acknowledge the support of time and facilities from Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuong Ho-Van.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Expressions of \(\mathcal {J}_i, i \in [1,5]\)

Firstly, using \({\Delta _r^{{j_l},DF}}\) in (12), \(\mathcal {J}_1\) is solved in closed-form as

$$\begin{aligned} \begin{aligned} {{{\mathcal {J}}}_1}&= {\mathbb {P}} \left\{ {\frac{{{\beta _l}{P_u}{k_{tr}}}}{{{k_{tr}}{\beta _u}{P_u} + {\sigma _r}}}< {\bar{\Delta }} } \right\} \\&\quad = {\mathbb {P}} \left\{ {\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_u}{k_{tr}} < {\bar{\Delta }} {\sigma _r}} \right\} \\&\quad = \left\{ {\begin{array}{*{20}{c}} {{F_{{k_{tr}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _r}}}{{\left[ {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right] {P_u}}}} \right) }&{}{,{\beta _l} > \frac{{{\bar{\Delta }} }}{{1 + {\bar{\Delta }} }}}\\ 1&{}{,{\beta _l} \le \frac{{{\bar{\Delta }} }}{{1 + {\bar{\Delta }} }}} \end{array}} \right. \end{aligned} \end{aligned}$$
(48)

Secondly, using \({\Delta _r^{DF}}\) in (11) and \({\Delta _r^{{j_l},DF}}\) in (12), \(\mathcal {J}_2\) is simplified as

$$\begin{aligned} \begin{aligned} {{{\mathcal {J}}}_2}&= {\mathbb {P}} \left\{ \frac{{{k_{lr}}{P_l}}}{{{\sigma _r}}}< {\bar{\Delta }},\max \left( {\frac{{{\beta _l}{P_u}{k_{tr}}}}{{{k_{tr}}{\beta _u}{P_u} + {\sigma _r}}},\frac{{{k_{lr}}{P_l}}}{{{\sigma _r}}}} \right) \right. \\&\left. \ge {\bar{\Delta }},\frac{{{k_{tr}}{\beta _u}{P_u}}}{{{\sigma _r}}}< {\bar{\Delta }} \right\} \\&= {\mathbb {P}} \left\{ \frac{{{k_{lr}}{P_l}}}{{{\sigma _r}}}< {\bar{\Delta }},\frac{{{k_{lr}}{P_l}}}{{{\sigma _r}}} \right. \\&\left. \ge {\bar{\Delta }},\frac{{{k_{tr}}{\beta _u}{P_u}}}{{{\sigma _r}}}< {\bar{\Delta }},\frac{{{\beta _l}{P_u}{k_{tr}}}}{{{k_{tr}}{\beta _u}{P_u} + {\sigma _r}}}< \frac{{{k_{lr}}{P_l}}}{{{\sigma _r}}} \right\} \\&\quad + {\mathbb {P}} \left\{ \frac{{{k_{lr}}{P_l}}}{{{\sigma _r}}}< {\bar{\Delta }},\frac{{{\beta _l}{P_u}{k_{tr}}}}{{{k_{tr}}{\beta _u}{P_u} + {\sigma _r}}} \ge {\bar{\Delta }},\frac{{{k_{tr}}{\beta _u}{P_u}}}{{{\sigma _r}}} \right. \\&\quad \left.< {\bar{\Delta }},\frac{{{\beta _l}{P_u}{k_{tr}}}}{{{k_{tr}}{\beta _u}{P_u} + {\sigma _r}}} \ge \frac{{{k_{lr}}{P_l}}}{{{\sigma _r}}} \right\} \\&\quad = {\mathbb {P}} \left\{ \frac{{{k_{lr}}{P_l}}}{{{\sigma _r}}}< {\bar{\Delta }},\frac{{{\beta _l}{P_u}{k_{tr}}}}{{{k_{tr}}{\beta _u}{P_u} + {\sigma _r}}} \ge {\bar{\Delta }},\frac{{{k_{tr}}{\beta _u}{P_u}}}{{{\sigma _r}}} \right. \\&\left. \quad< {\bar{\Delta }},\frac{{{\beta _l}{P_u}{k_{tr}}}}{{{k_{tr}}{\beta _u}{P_u} + {\sigma _r}}} \ge \frac{{{k_{lr}}{P_l}}}{{{\sigma _r}}} \right\} \\&\quad = {\mathbb {P}} \left\{ {\frac{{{k_{lr}}{P_l}}}{{{\sigma _r}}}< {\bar{\Delta }},\frac{{{\beta _l}{P_u}{k_{tr}}}}{{{k_{tr}}{\beta _u}{P_u} + {\sigma _r}}} \ge {\bar{\Delta }},\frac{{{k_{tr}}{\beta _u}{P_u}}}{{{\sigma _r}}} < {\bar{\Delta }} } \right\} , \end{aligned} \end{aligned}$$
(49)

which reduces to the closed form as

$$\begin{aligned} \begin{aligned} {{{\mathcal {J}}}_2}&= {\mathbb {P}} \left\{ {\frac{{{k_{lr}}{P_l}}}{{{\sigma _r}}}< {\bar{\Delta }} } \right\} {\mathbb {P}} \left\{ {\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_u}{k_{tr}} \ge {\bar{\Delta }} {\sigma _r},{k_{tr}}< \frac{{{\bar{\Delta }} {\sigma _r}}}{{{\beta _u}{P_u}}}} \right\} \\&\quad = \left\{ {\begin{array}{*{20}{c}} {{F_{{k_{lr}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _r}}}{{{P_l}}}} \right) {\mathbb {P}} \left\{ {{k_{tr}} \ge \frac{{{\bar{\Delta }} {\sigma _r}}}{{\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_u}}},{k_{tr}}< \frac{{{\bar{\Delta }} {\sigma _r}}}{{{\beta _u}{P_u}}}} \right\} }&{}{,{\beta _l} - {\bar{\Delta }} {\beta _u}> 0}\\ 0&{}{,{\beta _l} - {\bar{\Delta }} {\beta _u} \le 0} \end{array}} \right. \\&\quad = \left\{ {\begin{array}{*{20}{c}} {{F_{{k_{lr}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _r}}}{{{P_l}}}} \right) {\mathbb {P}} \left\{ {\frac{{{\bar{\Delta }} {\sigma _r}}}{{\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_u}}} \le {k_{tr}}< \frac{{{\bar{\Delta }} {\sigma _r}}}{{{\beta _u}{P_u}}}} \right\} }&{}{,{\beta _l} - {\bar{\Delta }} {\beta _u}> 0,\frac{{{\bar{\Delta }} {\sigma _r}}}{{\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_u}}} < \frac{{{\bar{\Delta }} {\sigma _r}}}{{{\beta _u}{P_u}}}}\\ 0&{}{,\text {otherwise}} \end{array}} \right. \\&\quad = \left\{ {\begin{array}{*{20}{c}} {{F_{{k_{lr}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _r}}}{{{P_l}}}} \right) \left[ {{F_{{k_{tr}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _r}}}{{{\beta _u}{P_u}}}} \right) - {F_{{k_{tr}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _r}}}{{\left[ {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right] {P_u}}}} \right) } \right] }&{}{,{\beta _l} > \frac{{1 + {\bar{\Delta }} }}{{2 + {\bar{\Delta }} }}}\\ 0&{}{,{\beta _l} \le \frac{{1 + {\bar{\Delta }} }}{{2 + {\bar{\Delta }} }}} \end{array}} \right. \end{aligned} \end{aligned}$$
(50)

Thirdly, using \({\Delta _r^{AF}}\) in (20), \(\mathcal {J}_3\) reduces to

$$\begin{aligned} \begin{aligned} {{{\mathcal {J}}}_3}&= {\mathbb {P}} \left\{ {\frac{{{P_l}{k_{lt}}}}{{{\sigma _t}}}< {\bar{\Delta }},\frac{{{\beta _u}{P_u}{k_{tr}}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) }}{{{\beta _l}{P_u}{k_{tr}}{\sigma _t} + {P_l}{k_{lt}}{\sigma _r} + {\sigma _t}{\sigma _r}}}< {\bar{\Delta }} } \right\} \\&\quad = {\mathbb {P}} \left\{ {k_{lt}}< \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},\left[ {{\beta _u}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) - {\bar{\Delta }} {\beta _l}{\sigma _t}} \right] {P_u}{k_{tr}}\right. \\&\left. \quad< {\bar{\Delta }} {\sigma _r}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) \right\} \\&\quad = {\mathbb {P}} \left\{ {k_{lt}}< \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},{k_{tr}}< \frac{{{\bar{\Delta }} {\sigma _r}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) }}{{\left[ {{\beta _u}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) - {\bar{\Delta }} {\beta _l}{\sigma _t}} \right] {P_u}}}\right. \\&\left. \quad ,{\beta _u}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) - {\bar{\Delta }} {\beta _l}{\sigma _t} > 0 \right\} \\&\quad + {\mathbb {P}} \left\{ {{k_{lt}} < \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},{\beta _u}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) - {\bar{\Delta }} {\beta _l}{\sigma _t} \le 0} \right\} \end{aligned} \end{aligned}$$
(51)

Since \(\beta _l>0.5\), the case of \({{\bar{\Delta }}}{\beta _l} - {\beta _u} > 0\) or \(\beta _l > \frac{{1}}{{1 + {{{\bar{\Delta }} }}}}\) always holds for \({{\bar{\Delta }} }\ge 1\) (0 dB). Therefore, the rest of this paper considers this case.

Since \(\frac{{{{{\bar{\Delta }} }}{\sigma _t}}}{{{P_l}}} < \frac{{\left( {{{{\bar{\Delta }} }}{\beta _l} - {\beta _u}} \right) {\sigma _t}}}{{{\beta _u}{P_l}}}\) is equivalent to \(\beta _l > \frac{{1 + {{{\bar{\Delta }} }}}}{{1 + 2{{{\bar{\Delta }} }}}}\), \(\mathcal {J}_3\) is further simplified to

$$\begin{aligned} {{{\mathcal {J}}}_3} = \left\{ {\begin{array}{*{20}{c}} {{\mathbb {P}} \left\{ {{k_{lt}} < \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}} \right\} }&{}{,{\beta _l} > \frac{{1 + {\bar{\Delta }} }}{{1 + 2{\bar{\Delta }} }}}\\ {{{\mathcal {A}}} + {\mathbb {P}} \left\{ {{k_{lt}} \le \frac{{\left( {{\bar{\Delta }} {\beta _l} - {\beta _u}} \right) {\sigma _t}}}{{{\beta _u}{P_l}}}} \right\} }&{}{,{\beta _l} \le \frac{{1 + {\bar{\Delta }} }}{{1 + 2{\bar{\Delta }} }}} \end{array}} \right. \end{aligned}$$
(52)

where

$$\begin{aligned}{} & {} {{\mathcal {A}}} = {\mathbb {P}} \left\{ \frac{{\left( {{\bar{\Delta }} {\beta _l} - {\beta _u}} \right) {\sigma _t}}}{{{\beta _u}{P_l}}}< {k_{lt}} \right. \nonumber \\{} & {} \quad \left.< \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},{k_{tr}} < \frac{{{\bar{\Delta }} {\sigma _r}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) }}{{\left[ {{\beta _u}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) - {\bar{\Delta }} {\beta _l}{\sigma _t}} \right] {P_u}}} \right\} \end{aligned}$$
(53)

Using the Gaussian–Chebyshev quadrature in [27] yields the closed form of \({{\mathcal {A}}}\) to be

$$\begin{aligned} \begin{aligned} {{\mathcal {A}}}&= \int \limits _{\frac{{\left( {{\bar{\Delta }} {\beta _l} - {\beta _u}} \right) {\sigma _t}}}{{{\beta _u}{P_l}}}}^{\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}} {{F_{{k_{tr}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _r}\left( {{P_l}x + {\sigma _t}} \right) }}{{\left[ {{\beta _u}\left( {{P_l}x + {\sigma _t}} \right) - {\bar{\Delta }} {\beta _l}{\sigma _t}} \right] {P_u}}}} \right) {f_{{k_{lt}}}}\left( x \right) dx} \\&\quad = \frac{{\left[ {\left( {1 + {\bar{\Delta }} } \right) {\beta _u} - {\bar{\Delta }} {\beta _l}} \right] {\sigma _t}}}{{2{\beta _u}{P_l}}}\sum \limits _{m = 1}^M {\frac{\pi }{M}\sqrt{1 - \psi _m^2} } {F_{{k_{tr}}}}\\&\quad \left( {\frac{{{\bar{\Delta }} {\sigma _r}\left( {{P_l}{\vartheta _m} + {\sigma _t}} \right) }}{{\left[ {{\beta _u}\left( {{P_l}{\vartheta _m} + {\sigma _t}} \right) - {\bar{\Delta }} {\beta _l}{\sigma _t}} \right] {P_u}}}} \right) {f_{{k_{lt}}}}\left( {{\vartheta _m}} \right) \end{aligned} \end{aligned}$$
(54)

where \({\psi _m} = \cos \frac{{\left( {2m - 1} \right) \pi }}{{2M}}\) and \({\vartheta _m} = \frac{{\left( {\left[ {\left( {1 + {\bar{\Delta }} } \right) {\beta _u} - {\bar{\Delta }} {\beta _l}} \right] {\psi _m} + {\bar{\Delta }} - {\beta _u}} \right) {\sigma _t}}}{{2{\beta _u}{P_l}}}\) with M capturing the complexity-accuracy trade-off. Our work opts for \(M=50\) that promises a high exactness as shown in Part 4.

Inserting \({{\mathcal {A}}}\) into (52), one achieves the closed form of \({{{\mathcal {J}}}_3}\) as

$$\begin{aligned} {{{\mathcal {J}}}_3} = \left\{ {\begin{array}{*{20}{c}} {{F_{{k_{lt}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}} \right) }&{}{,{\beta _l} > \frac{{1 + {\bar{\Delta }} }}{{1 + 2{\bar{\Delta }} }}}\\ {{{\mathcal {A}}} + {F_{{k_{lt}}}}\left( {\frac{{\left[ {{\bar{\Delta }} {\beta _l} - {\beta _u}} \right] {\sigma _t}}}{{{\beta _u}{P_l}}}} \right) }&{}{,{\beta _l} \le \frac{{1 + {\bar{\Delta }} }}{{1 + 2{\bar{\Delta }} }}} \end{array}} \right. \end{aligned}$$
(55)

Fourthly, using \({\Delta _r^{j_l,AF}}\) in (21), \(\mathcal {J}_4\) reduces to

$$\begin{aligned} \begin{aligned} {{{\mathcal {J}}}_4}&= {\mathbb {P}} \left\{ {\frac{{{P_l}{k_{lt}}}}{{{\sigma _t}}}< {\bar{\Delta }},\frac{{{\beta _l}{P_l}{k_{tr}}{P_u}{k_{lt}}}}{{{k_{tr}}{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{k_{lt}}} \right) + \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _r}}}< {\bar{\Delta }} } \right\} \\&\quad = {\mathbb {P}} \left\{ {k_{lt}}< \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},{k_{tr}}{P_u}\left[ {\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_l}{k_{lt}} - {\bar{\Delta }} {\sigma _t}} \right] \right. \\&\left.< {\bar{\Delta }} \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _r} \right\} \\&\quad = {\mathbb {P}} \left\{ {k_{lt}}< \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},{k_{tr}}< \frac{{{\bar{\Delta }} \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _r}}}{{{P_u}\left[ {\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_l}{k_{lt}} - {\bar{\Delta }} {\sigma _t}} \right] }}\right. \\&\left. \quad ,\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_l}{k_{lt}} - {\bar{\Delta }} {\sigma _t}> 0 \right\} \\&\quad + {\mathbb {P}} \left\{ {{k_{lt}}< \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_l}{k_{lt}} - {\bar{\Delta }} {\sigma _t} \le 0} \right\} \\&\quad = \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {\mathbb {P}} \left\{ {{k_{lt}}< \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},{k_{tr}}< \frac{{{\bar{\Delta }} \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _r}}}{{{P_u}\left[ {\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_l}{k_{lt}} - {\bar{\Delta }} {\sigma _t}} \right] }},{k_{lt}}> \frac{{{\bar{\Delta }} {\sigma _t}}}{{\left[ {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right] {P_l}}}} \right\} \\ \quad + {\mathbb {P}} \left\{ {{k_{lt}}< \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},{k_{lt}} \le \frac{{{\bar{\Delta }} {\sigma _t}}}{{\left[ {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right] {P_l}}}} \right\} \end{array}&{}{,{\beta _l} - {{{\bar{\Delta }} }}{\beta _u} > 0}\\ {{\mathbb {P}} \left\{ {{k_{lt}} < \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}} \right\} }&{}{,{\beta _l} - {{{\bar{\Delta }} }}{\beta _u} \le 0} \end{array}} \right. \end{aligned} \end{aligned}$$
(56)

Since \(\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}} < \frac{{{\bar{\Delta }} {\sigma _t}}}{{\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_l}}}\), \(\mathcal {J}_4\) is simplified as

$$\begin{aligned} {{{\mathcal {J}}}_4} = {F_{{k_{lt}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}} \right) . \end{aligned}$$
(57)

Lastly, using \({\Delta _r^{AF}}\) in (20) and \({\Delta _r^{j_l,AF}}\) in (21), \(\mathcal {J}_5\) reduces to

$$\begin{aligned} \begin{aligned} {{{\mathcal {J}}}_5}&= {\mathbb {P}} \left\{ \frac{{{P_l}{k_{lt}}}}{{{\sigma _t}}}< {\bar{\Delta }},\frac{{{P_l}{k_{lr}}}}{{{\sigma _r}}}< {\bar{\Delta }},\right. \\&\left. \quad \max \left( {\frac{{{\beta _l}{P_l}{k_{tr}}{P_u}{k_{lt}}}}{{{k_{tr}}{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{k_{lt}}} \right) + \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _r}}},\frac{{{P_l}{k_{lr}}}}{{{\sigma _r}}}} \right) \ge {\bar{\Delta }}, \right. \\&\quad \left. {\frac{{{\beta _u}{P_u}{k_{tr}}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) }}{{{\beta _l}{P_u}{k_{tr}}{\sigma _t} + {P_l}{k_{lt}}{\sigma _r} + {\sigma _t}{\sigma _r}}}< {\bar{\Delta }} } \right\} \\&\quad = {\mathbb {P}} \left\{ \frac{{{P_l}{k_{lr}}}}{{{\sigma _r}}}< {\bar{\Delta }} \right\} {\mathbb {P}} \left\{ \frac{{{P_l}{k_{lt}}}}{{{\sigma _t}}}< {\bar{\Delta }}\right. \\&\left. \quad ,\frac{{{\beta _l}{P_l}{k_{tr}}{P_u}{k_{lt}}}}{{{k_{tr}}{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{k_{lt}}} \right) + \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _r}}} \ge {\bar{\Delta }}, \right. \\&\quad \left. {\frac{{{\beta _u}{P_u}{k_{tr}}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) }}{{{\beta _l}{P_u}{k_{tr}}{\sigma _t} + {P_l}{k_{lt}}{\sigma _r} + {\sigma _t}{\sigma _r}}}< {\bar{\Delta }} } \right\} \\&\quad = {F_{{k_{lr}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _r}}}{{{P_l}}}} \right) \left[ {\mathbb {P}} \left\{ {k_{lt}}< \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},{k_{tr}} \ge \right. \right. \\&\left. \left. \quad \frac{{{\bar{\Delta }} \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _r}}}{{\left[ {\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_l}{k_{lt}} - {\bar{\Delta }} {\sigma _t}} \right] {P_u}}}, \right. \right. \\&\quad {k_{tr}}< \frac{{{\bar{\Delta }} {P_l}{k_{lt}}{\sigma _r} + {\bar{\Delta }} {\sigma _t}{\sigma _r}}}{{\left[ {{\beta _u}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) - {\bar{\Delta }} {\beta _l}{\sigma _t}} \right] {P_u}}},\\&\quad \left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_l}{k_{lt}} - {\bar{\Delta }} {\sigma _t}> 0,\\&\quad \left. {{\beta _u}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) - {\bar{\Delta }} {\beta _l}{\sigma _t}> 0} \right\} \\&\quad + {\mathbb {P}}\left\{ {{k_{lt}} < \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},{k_{tr}} \ge \frac{{{\bar{\Delta }} \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _r}}}{{\left[ {\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_l}{k_{lt}} - {\bar{\Delta }} {\sigma _t}} \right] {P_u}}},} \right. \\&\quad \left. {\left. {\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_l}{k_{lt}} - {\bar{\Delta }} {\sigma _t} > 0,{\beta _u}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) - {\bar{\Delta }} {\beta _l}{\sigma _t} \le 0} \right\} } \right] \\&\quad = 0 \end{aligned} \end{aligned}$$
(58)

since

$$\begin{aligned} \left\{ {\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_l}{k_{lt}} - {\bar{\Delta }} {\sigma _t} > 0} \right\} = \emptyset \ \ \ \text {for} \ \ \ {{\beta _l} - {\bar{\Delta }} {\beta _u}}\le 0 \end{aligned}$$

and

$$\begin{aligned}{} & {} \left\{ {{k_{lt}} < \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},\left( {{\beta _l} - {\bar{\Delta }} {\beta _u}} \right) {P_l}{k_{lt}} - {\bar{\Delta }} {\sigma _t}> 0} \right\} = \emptyset \\{} & {} \quad \text {for}\ \ \ {{\beta _l} - {\bar{\Delta }} {\beta _u}} > 0. \end{aligned}$$

Appendix B: Expressions of \(\mathcal {K}_i, i \in [1,4]\)

Firstly, \(\mathcal {K}_1\) is simplified as

$$\begin{aligned} \begin{aligned} {{{\mathcal {K}}}_1}&= {\mathbb {P}} \left\{ {{\Delta _{lr}} \le {\bar{\Delta }},\left[ {{\beta _l} - \left( {{\bar{\Delta }} - {\Delta _{lr}}} \right) {\beta _u}} \right] {P_u}{k_{tr}}< \left( {{\bar{\Delta }} - {\Delta _{lr}}} \right) {\sigma _r}} \right\} \\&\quad = {\mathbb {P}} \left\{ {\Delta _{lr}} \le {\bar{\Delta }},{k_{tr}}< \frac{{\left( {{\bar{\Delta }} - {\Delta _{lr}}} \right) {\sigma _r}}}{{\left[ {{\beta _l} - \left( {{\bar{\Delta }} - {\Delta _{lr}}} \right) {\beta _u}} \right] {P_u}}},\right. \\&\left. {\beta _l} - \left( {{\bar{\Delta }} - {\Delta _{lr}}} \right) {\beta _u} > 0 \right\} \\&\qquad + {\mathbb {P}} \left\{ {{\Delta _{lr}} \le {\bar{\Delta }},{\beta _l} - \left( {{\bar{\Delta }} - {\Delta _{lr}}} \right) {\beta _u} \le 0} \right\} \\&\quad = \left\{ {\begin{array}{*{20}{c}} {{{\mathcal {Y}}} + {F_{{k_{lr}}}}\left( {\left[ {{\bar{\Delta }} - \frac{{{\beta _l}}}{{{\beta _u}}}} \right] \frac{{{\sigma _r}}}{{{P_l}}}} \right) }&{}{,{\beta _l} < \frac{{{{{\bar{\Delta }} }}}}{{1 + {{{\bar{\Delta }} }}}}}\\ {{\mathcal {H}}}&{}{,{\beta _l} \ge \frac{{{{{\bar{\Delta }} }}}}{{1 + {{{\bar{\Delta }} }}}}} \end{array}} \right. \end{aligned} \end{aligned}$$
(59)

where

$$\begin{aligned} \begin{aligned} {{\mathcal {Y}}}&= {\mathbb {P}} \left\{ {{\bar{\Delta }} - \frac{{{\beta _l}}}{{{\beta _u}}}< {\Delta _{lr}} \le {\bar{\Delta }},{k_{tr}} < \frac{{\left( {{\bar{\Delta }} - {\Delta _{lr}}} \right) {\sigma _r}}}{{\left[ {{\beta _l} - \left( {{\bar{\Delta }} - {\Delta _{lr}}} \right) {\beta _u}} \right] {P_u}}}} \right\} \\&\quad = \int \limits _{{\bar{\Delta }} - \frac{{{\beta _l}}}{{{\beta _u}}}}^{{\bar{\Delta }} } {{F_{{k_{tr}}}}\left( {\frac{{\left( {{\bar{\Delta }} - x} \right) {\sigma _r}}}{{\left[ {{\beta _l} - \left( {{\bar{\Delta }} - x} \right) {\beta _u}} \right] {P_u}}}} \right) } \frac{{{\sigma _r}}}{{{P_l}}}{f_{{k_{lr}}}}\left( {\frac{{{\sigma _r}}}{{{P_l}}}x} \right) dx\\&\quad = \frac{{{\beta _l}{\sigma _r}}}{{2{\beta _u}{P_l}}}\sum \limits _{m = 1}^M {\frac{\pi }{M}\sqrt{1 - \psi _m^2} } {F_{{k_{tr}}}}\left( {\frac{{\left( {{\bar{\Delta }} - {\mu _m}} \right) {\sigma _r}}}{{\left[ {{\beta _l} - \left( {{\bar{\Delta }} - {\mu _m}} \right) {\beta _u}} \right] {P_u}}}} \right) \\&\qquad {f_{{k_{lr}}}}\left( {\frac{{{\sigma _r}{\mu _m}}}{{{P_l}}}} \right) \end{aligned} \end{aligned}$$
(60)

and

$$\begin{aligned} \begin{aligned} {{\mathcal {H}}}&= {\mathbb {P}} \left\{ {{\Delta _{lr}} \le {\bar{\Delta }},{k_{tr}} < \frac{{\left( {{\bar{\Delta }} - {\Delta _{lr}}} \right) {\sigma _r}}}{{\left[ {{\beta _l} - \left( {{\bar{\Delta }} - {\Delta _{lr}}} \right) {\beta _u}} \right] {P_u}}}} \right\} \\&\quad = \int \limits _0^{{\bar{\Delta }} } {{F_{{k_{tr}}}}\left( {\frac{{\left( {{\bar{\Delta }} - x} \right) {\sigma _r}}}{{\left[ {{\beta _l} - \left( {{\bar{\Delta }} - x} \right) {\beta _u}} \right] {P_u}}}} \right) } \frac{{{\sigma _r}}}{{{P_l}}}{f_{{k_{lr}}}}\left( {\frac{{{\sigma _r}}}{{{P_l}}}x} \right) dx\\&\quad = \frac{{{\bar{\Delta }} {\sigma _l}}}{{2{P_l}}}\sum \limits _{m = 1}^M {\frac{\pi }{M}\sqrt{1 - \psi _m^2} } {F_{{k_{tr}}}}\left( {\frac{{\left( {{\bar{\Delta }} - {\tau _m}} \right) {\sigma _r}}}{{\left[ {{\beta _l} - \left( {{\bar{\Delta }} - {\tau _m}} \right) {\beta _u}} \right] {P_u}}}} \right) \\&\qquad {f_{{k_{lr}}}}\left( {\frac{{{\sigma _r}{\tau _m}}}{{{P_l}}}} \right) \end{aligned} \end{aligned}$$
(61)

with \({\mu _m} = \frac{{{\beta _l}}}{{2{\beta _u}}}\left( {{\psi _m} - 1} \right) + {{\bar{\Delta }}}\) and \({\tau _m} = \frac{{{\bar{\Delta }} }}{2}\left( {{\psi _m} + 1} \right) \).

The last equalities in (60) and (61) come from the Gaussian–Chebyshev quadrature.

Secondly, \(\mathcal {K}_2\) is expressed in closed-form as

$$\begin{aligned} \begin{aligned}&{{{\mathcal {K}}}_2} = {\mathbb {P}} \left\{ {{\bar{\Delta }} - \frac{{{\beta _l}{P_u}{k_{tr}}}}{{{k_{tr}}{\beta _u}{P_u} + {\sigma _r}}}< {\Delta _{lr}} \le {\bar{\Delta }},{k_{tr}} < \frac{{{\sigma _r}{\bar{\Delta }} }}{{{\beta _u}{P_u}}}} \right\} \\&\quad = \int \limits _0^{\frac{{{\sigma _r}{\bar{\Delta }} }}{{{\beta _u}{P_u}}}} \left[ {{F_{{k_{lr}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _r}}}{{{P_l}}}} \right) - {F_{{k_{lr}}}}\left( {\left[ {{\bar{\Delta }} - \frac{{{\beta _l}{P_u}x}}{{x{\beta _u}{P_u} + {\sigma _r}}}} \right] \frac{{{\sigma _r}}}{{{P_l}}}} \right) } \right] \\&\qquad {f_{{k_{tr}}}}\left( x \right) dx \\&\quad = \frac{{{\sigma _r}{\bar{\Delta }} }}{{2{\beta _u}{P_u}}}\sum \limits _{m = 1}^M {\frac{\pi }{M}\sqrt{1 - \psi _m^2} } \\&\qquad \left[ {{F_{{k_{lr}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _r}}}{{{P_l}}}} \right) - {F_{{k_{lr}}}}\left( {\left[ {{\bar{\Delta }} - \frac{{{\beta _l}{P_u}{\zeta _m}}}{{{\zeta _m}{\beta _u}{P_u} + {\sigma _r}}}} \right] \frac{{{\sigma _r}}}{{{P_l}}}} \right) } \right] {f_{{k_{tr}}}}\left( {{\zeta _m}} \right) , \end{aligned} \end{aligned}$$
(62)

where \({\zeta _m} = \frac{{{\sigma _r}{\bar{\Delta }} }}{{2{\beta _u}{P_u}}}\left( {{\psi _m} + 1} \right) \).

Thirdly, \(\mathcal {K}_3\) is rewritten as

$$\begin{aligned} \begin{aligned}&{{{\mathcal {K}}}_3} = {\mathbb {P}} \left\{ {\Delta _{lt}}< {\bar{\Delta }},{\Delta _{lr}} < {\bar{\Delta }} \right. \\&\qquad \left. -\frac{{{\beta _l}{P_l}{k_{tr}}{P_u}{k_{lt}}}}{{{k_{tr}}{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{k_{lt}}} \right) + \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _r}}} \right\} \\&\quad = \int \limits _0^\infty \int \limits _0^{\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}} {F_{{k_{lr}}}}\\&\quad \left( {\left[ {{\bar{\Delta }} - \frac{{{\beta _l}{P_l}y{P_u}x}}{{y{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}x} \right) + \left( {{P_l}x + {\sigma _t}} \right) {\sigma _r}}}} \right] \frac{{{\sigma _r}}}{{{P_l}}}} \right) \\&\qquad {f_{{k_{lt}}}}\left( x \right) {f_{{k_{tr}}}}\left( y \right) dxdy \\&\quad = {F_{{k_{lt}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}} \right) - \frac{{{\mathcal {V}}}}{{{\varphi _{tr}}}}{e^{ - \frac{{{\bar{\Delta }} {\sigma _r}}}{{{P_l}{\varphi _{lr}}}}}} \end{aligned} \end{aligned}$$
(63)

where

$$\begin{aligned} {{\mathcal {V}}} = \int \limits _0^{\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}} {\left[ {\int \limits _0^\infty {{e^{\frac{{y{\beta _l}{P_u}x}}{{y{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}x} \right) + \left( {{P_l}x + {\sigma _t}} \right) {\sigma _r}}}\frac{{{\sigma _r}}}{{{\varphi _{lr}}}} - \frac{y}{{{\varphi _{tr}}}}}}dy} } \right] {f_{{k_{lt}}}}\left( x \right) dx}. \end{aligned}$$
(64)

Performing two variable changes consecutively (\(z = y + \frac{{\left( {{P_l}x + {\sigma _t}} \right) {\sigma _r}}}{{{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}x} \right) }}\) and \(w = \frac{1}{z}\)), \({{\mathcal {V}}}\) is expressed in closed-form as

$$\begin{aligned} \begin{aligned} {{\mathcal {V}}}&= \int \limits _0^{\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}} {e^{\frac{{{\beta _l}x{\sigma _r}}}{{{\varphi _{lr}}\left( {{\sigma _t} + {\beta _u}{P_l}x} \right) }} + \frac{{\left( {{P_l}x + {\sigma _t}} \right) {\sigma _r}}}{{{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}x} \right) {\varphi _{tr}}}}}}\\&\qquad \left[ {\int \limits _0^{\frac{{{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}x} \right) }}{{\left( {{P_l}x + {\sigma _t}} \right) {\sigma _r}}}} {{w^{ - 2}}{e^{ - \frac{{\left( {{P_l}x + {\sigma _t}} \right) {\beta _l}xw\sigma _r^2}}{{{\varphi _{lr}}{P_u}{{\left( {{\sigma _t} + {\beta _u}{P_l}x} \right) }^2}}} - \frac{1}{{{\varphi _{tr}}w}}}}dw} } \right] {f_{{k_{lt}}}}\left( x \right) dx \\&\quad = \frac{{{\bar{\Delta }} {\sigma _t}}}{{2{P_l}}}\sum \limits _{m = 1}^M {\frac{\pi }{M}\sqrt{1 - \psi _m^2} } \\&\qquad \left[ {{e^{\frac{{{\beta _l}{\lambda _m}{\sigma _r}}}{{{\varphi _{lr}}\left( {{\sigma _t} + {\beta _u}{P_l}{\lambda _m}} \right) }} + \frac{{\left( {{P_l}{\lambda _m} + {\sigma _t}} \right) {\sigma _r}}}{{{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{\lambda _m}} \right) {\varphi _{tr}}}}}}\frac{{{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{\lambda _m}} \right) }}{{2\left( {{P_l}{\lambda _m} + {\sigma _t}} \right) {\sigma _r}{\varphi _{tr}}}} \times } \right. \\&\qquad \left. {\sum \limits _{v = 1}^V {\frac{{\pi \sqrt{1 - \eta _v^2} }}{{V\alpha _{vm}^2}}} {e^{ - \frac{{\left( {{P_l}{\lambda _m} + {\sigma _t}} \right) {\beta _l}{\lambda _m}\sigma _r^2{\alpha _{vm}}}}{{{\varphi _{lr}}{P_u}{{\left( {{\sigma _t} + {\beta _u}{P_l}{\lambda _m}} \right) }^2}}} - \frac{1}{{{\varphi _{tr}}{\alpha _{vm}}}}}}} \right] {f_{{k_{lt}}}}\left( {{\lambda _m}} \right) , \end{aligned} \end{aligned}$$
(65)

where \({\eta _v} = \cos \frac{{\left( {2v - 1} \right) \pi }}{{2V}}\), \({\lambda _m} = \frac{{{\bar{\Delta }} {\sigma _t}}}{{2{P_l}}}\left( {{\psi _m} + 1} \right) \), and \({\alpha _{vm}} = \frac{{{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{\lambda _m}} \right) }}{{2\left( {{P_l}{\lambda _m} + {\sigma _t}} \right) {\sigma _r}}}\left( {{\eta _v} + 1} \right) \) with V capturing the complexity-accuracy trade-off of the Gaussian–Chebyshev quadrature. This work opts for \(V = 50\) that promises a high exactness as shown in Part 4.

Finally, \({{\mathcal {K}}}_4\) is rewritten as

$$\begin{aligned} \begin{aligned} {{{\mathcal {K}}}_4}&= {\mathbb {P}} \left\{ {\Delta _{lt}}< {\bar{\Delta }},{\bar{\Delta }} - \frac{{{\beta _l}{P_l}{k_{tr}}{P_u}{k_{lt}}}}{{{k_{tr}}{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{k_{lt}}} \right) + \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _r}}} \right. \\&\quad \left.< {\Delta _{lr}} \le {\bar{\Delta }}, \frac{{{\beta _u}{P_u}{k_{tr}}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) }}{{{\beta _l}{P_u}{k_{tr}}{\sigma _t} + {P_l}{k_{lt}}{\sigma _r} + {\sigma _t}{\sigma _r}}} \right. \\&\quad \left.< {\bar{\Delta }} \right\} \\&\quad = {\mathbb {P}} \left\{ {{k_{lt}}< \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},{\bar{\Delta }} - \frac{{{\beta _l}{P_l}{k_{tr}}{P_u}{k_{lt}}}}{{{k_{tr}}{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{k_{lt}}} \right) + \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _r}}}< {\Delta _{lr}} \le {\bar{\Delta }},} \right. \\&\quad \left. {{k_{tr}}< \frac{{{\bar{\Delta }} \left( {{P_l}{k_{lt}}{\sigma _r} + {\sigma _t}{\sigma _r}} \right) }}{{\left[ {{\beta _u}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) - {\bar{\Delta }} {\beta _l}{\sigma _t}} \right] {P_u}}},{k_{lt}} > \left( {\frac{{{\bar{\Delta }} {\beta _l}}}{{{\beta _u}}} - 1} \right) \frac{{{\sigma _t}}}{{{P_l}}}} \right\} \\&\qquad + {\mathbb {P}} \left\{ {{k_{lt}}< \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},} \right. \\&\quad \left. {\bar{\Delta }} - \frac{{{\beta _l}{P_l}{k_{tr}}{P_u}{k_{lt}}}}{{{k_{tr}}{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{k_{lt}}} \right) + \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _r}}} < {\Delta _{lr}} \le {\bar{\Delta }},{k_{lt}} \right. \\&\left. \le \left( {\frac{{{\bar{\Delta }} {\beta _l}}}{{{\beta _u}}} - 1} \right) \frac{{{\sigma _t}}}{{{P_l}}} \right\} \end{aligned} \end{aligned}$$
(66)

Since \(\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}} < \left( {\frac{{{\bar{\Delta }} {\beta _l}}}{{{\beta _u}}} - 1} \right) \frac{{{\sigma _t}}}{{{P_l}}}\) is equivalent to \({\beta _l} > \frac{{1 + {\bar{\Delta }} }}{{1 + 2{\bar{\Delta }} }}\), \({{\mathcal {K}}}_4\) is decomposed as

$$\begin{aligned} {{{\mathcal {K}}}_4} = \left\{ {\begin{array}{*{20}{c}} {{\mathcal {M}}}&{}{,{\beta _l} > \frac{{1 + {\bar{\Delta }} }}{{1 + 2{\bar{\Delta }} }}}\\ {{{\mathcal {Q}}} + {{\mathcal {L}}}}&{}{,{\beta _l} \le \frac{{1 + {\bar{\Delta }} }}{{1 + 2{\bar{\Delta }} }}} \end{array}} \right. \end{aligned}$$
(67)

where

$$\begin{aligned}{} & {} {{\mathcal {M}}} = {\mathbb {P}} \left\{ {k_{lt}}< \frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}},{\bar{\Delta }}\right. \nonumber \\ -{} & {} \qquad \left. \frac{{{\beta _l}{P_l}{k_{tr}}{P_u}{k_{lt}}}}{{{k_{tr}}{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{k_{lt}}} \right) + \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _r}}} < {\Delta _{lr}} \le {\bar{\Delta }} \right\} \end{aligned}$$
(68)
$$\begin{aligned}{} & {} {{\mathcal {Q}}} = {\mathbb {P}} \left\{ \left( {\frac{{{\bar{\Delta }} {\beta _l}}}{{{\beta _u}}} - 1} \right) \frac{{{\sigma _t}}}{{{P_l}}}< {k_{lt}} \right. \nonumber \\{} & {} \quad \left. \quad<\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}, \right. {k_{tr}}< \frac{{{\bar{\Delta }} \left( {{P_l}{k_{lt}}{\sigma _r} + {\sigma _t}{\sigma _r}} \right) }}{{\left[ {{\beta _u}\left( {{P_l}{k_{lt}} + {\sigma _t}} \right) - {{{\bar{\Delta }} }}{\beta _l}{\sigma _t}} \right] {P_u}}},\nonumber \\{} & {} \quad \left. {{\bar{\Delta }} - \frac{{{\beta _l}{P_l}{k_{tr}}{P_u}{k_{lt}}}}{{{k_{tr}}{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{k_{lt}}} \right) + \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _l}}} < {\Delta _{lr}} \le {\bar{\Delta }} } \right\} \end{aligned}$$
(69)
$$\begin{aligned}{} & {} {{\mathcal {L}}} = {\mathbb {P}} \left\{ {\bar{\Delta }} - \frac{{{\beta _l}{P_l}{k_{tr}}{P_u}{k_{lt}}}}{{{k_{tr}}{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{k_{lt}}} \right) + \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _r}}} \right. \nonumber \\{} & {} \quad \left. < {\Delta _{lr}} \le {\bar{\Delta }},{k_{lt}} \le \left( {\frac{{{\bar{\Delta }} {\beta _l}}}{{{\beta _u}}} - 1} \right) \frac{{{\sigma _t}}}{{{P_l}}} \right\} . \end{aligned}$$
(70)

By following the derivation of \(\mathcal {K}_3\), \(\mathcal {M}\) and \(\mathcal {L}\) are expressed in closed-form to be

$$\begin{aligned} \begin{aligned}&{{\mathcal {M}}} = \int \limits _0^\infty \int \limits _0^{\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}} \left[ {F_{{k_{lr}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _r}}}{{{P_l}}}} \right) \right. \\&\left. \qquad - {F_{{k_{lr}}}}\left( {\left[ {{\bar{\Delta }} - \frac{{{\beta _l}{P_l}y{P_u}x}}{{y{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}x} \right) + \left( {{P_l}x + {\sigma _t}} \right) {\sigma _r}}}} \right] \frac{{{\sigma _r}}}{{{P_l}}}} \right) \right] \times \\&\quad {f_{{k_{lt}}}}\left( x \right) {f_{{k_{tr}}}}\left( y \right) dxdy\\&\quad = {e^{ - \frac{{{\bar{\Delta }} {\sigma _r}}}{{{P_l}{\varphi _{lr}}}}}}\left[ {\frac{{{\mathcal {V}}}}{{{\varphi _{tr}}}} - {F_{{k_{lt}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}} \right) } \right] \end{aligned} \end{aligned}$$
(71)

and

$$\begin{aligned} \begin{aligned}&{{\mathcal {L}}} = \int \limits _0^\infty \int \limits _0^{\left( {\frac{{{\bar{\Delta }} {\beta _l}}}{{{\beta _u}}} - 1} \right) \frac{{{\sigma _t}}}{{{P_l}}}} \left[ {F_{{k_{lr}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _r}}}{{{P_l}}}} \right) \right. \\&\left. \qquad -{F_{{k_{lr}}}}\left( {\left[ {{\bar{\Delta }} - \frac{{{\beta _l}{P_l}y{P_u}x}}{{y{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}x} \right) + \left( {{P_l}x + {\sigma _t}} \right) {\sigma _r}}}} \right] \frac{{{\sigma _r}}}{{{P_l}}}} \right) \right] \times \\&\quad {f_{{k_{lt}}}}\left( x \right) {f_{{k_{tr}}}}\left( y \right) dxdy\\&\quad = {e^{ - \frac{{{\bar{\Delta }} {\sigma _r}}}{{{P_l}{\varphi _{lr}}}}}}\left[ {\frac{{{\mathcal {U}}}}{{{\varphi _{tr}}}} - {F_{{k_{lt}}}}\left( {\left[ {\frac{{{\bar{\Delta }} {\beta _l}}}{{{\beta _u}}} - 1} \right] \frac{{{\sigma _t}}}{{{P_l}}}} \right) } \right] \end{aligned} \end{aligned}$$
(72)

where

$$\begin{aligned} \begin{aligned} {{\mathcal {U}}}&= \frac{{{\sigma _t}}}{{2{P_l}}}\left( {\frac{{{\bar{\Delta }} {\beta _l}}}{{{\beta _u}}} - 1} \right) \sum \limits _{m = 1}^M {\frac{\pi }{M}\sqrt{1 - \psi _m^2} }\\&\quad \left[ {{e^{\frac{{{\beta _l}{\Psi _m}{\sigma _r}}}{{{\varphi _{pd}}\left( {{\sigma _t} + {\beta _u}{P_l}{\Psi _m}} \right) }} + \frac{{\left( {{P_l}{\Psi _m} + {\sigma _t}} \right) {\sigma _r}}}{{{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{\Psi _m}} \right) {\varphi _{tr}}}}}}\frac{{{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{\Psi _m}} \right) }}{{2\left( {{P_l}{\Psi _m} + {\sigma _t}} \right) {\sigma _r}{\varphi _{tr}}}} \times } \right. \\&\quad \left. {\sum \limits _{v = 1}^V {\frac{{\pi \sqrt{1 - \eta _v^2} }}{{V\Lambda _{vm}^2}}} {e^{ - \frac{{\left( {{P_l}{\Psi _m} + {\sigma _t}} \right) {\beta _l}{\Psi _m}\sigma _r^2{\Lambda _{vm}}}}{{{\varphi _{lr}}{P_u}{{\left( {{\sigma _t} + {\beta _u}{P_l}{\Psi _m}} \right) }^2}}} - \frac{1}{{{\varphi _{tr}}{\Lambda _{vm}}}}}}} \right] {f_{{k_{lt}}}}\left( {{\Psi _m}} \right) \end{aligned} \end{aligned}$$
(73)

with \({\Psi _m} = \frac{{{\sigma _t}}}{{2{P_l}}}\left( {\frac{{{\bar{\Delta }} {\beta _l}}}{{{\beta _u}}} - 1} \right) \left( {{\psi _m} + 1} \right) \) and \({\Lambda _{vm}} = \frac{{{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{\Psi _m}} \right) }}{{2\left( {{P_l}{\Psi _m} + {\sigma _t}} \right) {\sigma _r}}}\left( {{\eta _v} + 1} \right) \).

In the meantime, \(\mathcal {Q}\) is expressed in closed-form as

$$\begin{aligned} \begin{aligned}&{{\mathcal {Q}}} = \int \limits _{\left( {\frac{{{\bar{\Delta }} {\beta _l}}}{{{\beta _u}}} - 1} \right) \frac{{{\sigma _t}}}{{{P_l}}}}^{\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}} {\int \limits _0^{\frac{{{\bar{\Delta }} \left( {{P_l}x{\sigma _r} + {\sigma _t}{\sigma _r}} \right) }}{{\left[ {{\beta _u}\left( {{P_l}x + {\sigma _t}} \right) - {\bar{\Delta }} {\beta _l}{\sigma _t}} \right] {P_u}}}} {\left[ {{F_{{k_{lr}}}}\left( {\frac{{{\bar{\Delta }} {\sigma _r}}}{{{P_l}}}} \right) - } \right. } } \\&\quad \left. {{F_{{k_{lr}}}}\left( {\left[ {{\bar{\Delta }} - \frac{{{\beta _l}{P_l}y{P_u}x}}{{y{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}x} \right) + \left( {{P_l}x + {\sigma _t}} \right) {\sigma _r}}}} \right] \frac{{{\sigma _r}}}{{{P_l}}}} \right) } \right] \\&\quad {f_{{k_{tr}}}}\left( y \right) {f_{{k_{lt}}}}\left( x \right) dxdy\\&\quad = {e^{ - \frac{{{\bar{\Delta }} {\sigma _r}}}{{{P_l}{\varphi _{lr}}}}}}\frac{{\left[ {\left( {1 + {\bar{\Delta }} } \right) {\beta _u} - {\bar{\Delta }} {\beta _l}} \right] {\sigma _t}}}{{2{\beta _u}{P_l}}}\\&\quad \sum \limits _{m = 1}^M {\frac{{\pi \sqrt{1 - \psi _m^2} {\bar{\Delta }} \left( {{P_l}{\vartheta _m} + {\sigma _t}} \right) {\sigma _r}}}{{2M\left[ {{\beta _u}\left( {{P_l}{\vartheta _m} + {\sigma _t}} \right) - {\bar{\Delta }} {\beta _l}{\sigma _t}} \right] {P_u}}}} \times \\&\quad \sum \limits _{v = 1}^V {\frac{\pi }{V}\sqrt{1 - \eta _v^2} } \left( {{e^{\frac{{{\beta _l}{\Upsilon _{vm}}{P_u}{\vartheta _m}{\sigma _r}}}{{\left[ {{\Upsilon _{vm}}{P_u}\left( {{\sigma _t} + {\beta _u}{P_l}{\vartheta _m}} \right) + \left( {{P_l}{\vartheta _m} + {\sigma _t}} \right) {\sigma _r}} \right] {\varphi _{lr}}}}}} - 1} \right) \\&\quad {f_{{k_{tr}}}}\left( {{\Upsilon _{vm}}} \right) {f_{{k_{lt}}}}\left( {{\vartheta _m}} \right) , \end{aligned} \end{aligned}$$
(74)

where \({\Upsilon _{vm}} = \frac{{{\bar{\Delta }} \left( {{P_l}{\vartheta _m} + {\sigma _t}} \right) {\sigma _r}\left( {{\eta _v} + 1} \right) }}{{2\left[ {{\beta _u}\left( {{P_l}{\vartheta _m} + {\sigma _t}} \right) - {\bar{\Delta }} {\beta _l}{\sigma _t}} \right] {P_u}}}.\)

Appendix C: Expressions of \(\mathcal {G}_i, i \in [1,2]\)

Firstly, \({{{\mathcal {G}}}_1}\) is rewritten as

$$\begin{aligned} \begin{aligned} {{{\mathcal {G}}}_1}&= {\mathbb {P}} \left\{ {\Delta _{ll}}< {\bar{\Delta }},{k_{tl}}< \frac{{\left( {{\bar{\Delta }} - {\Delta _{ll}}} \right) {\sigma _l}}}{{\left[ {{\beta _l} - \left( {{\bar{\Delta }} - {\Delta _{ll}}} \right) {\beta _u}} \right] {P_u}}},\right. \\&\left. \quad {\beta _l} - \left( {{\bar{\Delta }} - {\Delta _{ll}}} \right) {\beta _u} > 0 \right\} \\&\quad + {\mathbb {P}} \left\{ {{\Delta _{ll}}< {\bar{\Delta }},{\beta _l} - \left( {{\bar{\Delta }} - {\Delta _{ll}}} \right) {\beta _u} \le 0} \right\} \\&\quad = \left\{ {\begin{array}{*{20}{c}} {{{{\mathcal {G}}}_{11}}}&{}{,{\beta _l} < \frac{{{\bar{\Delta }} }}{{1 + {\bar{\Delta }} }}}\\ {{{{\mathcal {G}}}_{12}}}&{}{,{\beta _l} \ge \frac{{{\bar{\Delta }} }}{{1 + {\bar{\Delta }} }}} \end{array}} \right. \end{aligned} \end{aligned}$$
(75)

where

$$\begin{aligned} \begin{aligned} {{{\mathcal {G}}}_{11}}&= {\mathbb {P}} \left\{ {{\bar{\Delta }} - \frac{{{\beta _l}}}{{{\beta _u}}}< {\Delta _{ll}}< {\bar{\Delta }},{k_{tl}} < \frac{{\left( {{\bar{\Delta }} - {\Delta _{ll}}} \right) {\sigma _l}}}{{\left[ {{\beta _l} - \left( {{\bar{\Delta }} - {\Delta _{ll}}} \right) {\beta _u}} \right] {P_u}}}} \right\} \\&\quad +{\mathbb {P}} \left\{ {{\Delta _{ll}} \le {\bar{\Delta }} - \frac{{{\beta _l}}}{{{\beta _u}}}} \right\} \\&\quad = \int \limits _{{\bar{\Delta }} - \frac{{{\beta _l}}}{{{\beta _u}}}}^{{\bar{\Delta }} } {{F_{{k_{tl}}}}\left( {\frac{{\left( {{\bar{\Delta }} - x} \right) {\sigma _l}}}{{\left[ {{\beta _l} - \left( {{\bar{\Delta }} - x} \right) {\beta _u}} \right] {P_u}}}} \right) } \frac{{{\sigma _l}}}{{{P_l}}}{f_{{k_{ll}}}}\left( {\frac{{{\sigma _l}}}{{{P_l}}}x} \right) dx \\&\quad + {F_{{k_{ll}}}}\left( {\left[ {{\bar{\Delta }} - \frac{{{\beta _l}}}{{{\beta _u}}}} \right] \frac{{{\sigma _l}}}{{{P_l}}}} \right) \\&\quad = \frac{{{\beta _l}{\sigma _l}}}{{2{\beta _u}{P_l}}}\sum \limits _{m = 1}^M {\frac{\pi }{M}\sqrt{1 - \psi _m^2} } {F_{{k_{tl}}}}\left( {\frac{{\left( {{\bar{\Delta }} - {\mu _m}} \right) {\sigma _l}}}{{\left[ {{\beta _l} - \left( {{\bar{\Delta }} - {\mu _m}} \right) {\beta _u}} \right] {P_u}}}} \right) \\&\quad {f_{{k_{ll}}}}\left( {\frac{{{\sigma _l}{\mu _m}}}{{{P_l}}}} \right) + {F_{{k_{ll}}}}\left( {\left[ {{\bar{\Delta }} - \frac{{{\beta _l}}}{{{\beta _u}}}} \right] \frac{{{\sigma _l}}}{{{P_l}}}} \right) \end{aligned} \end{aligned}$$
(76)

and

$$\begin{aligned} \begin{aligned}&{{{\mathcal {G}}}_{12}} = {{\mathbb {P}}}\left\{ {{\Delta _{ll}}< {\bar{\Delta }},{k_{tl}} < \frac{{\left( {{\bar{\Delta }} - {\Delta _{ll}}} \right) {\sigma _l}}}{{\left[ {{\beta _l} - \left( {{\bar{\Delta }} - {\Delta _{ll}}} \right) {\beta _u}} \right] {P_u}}}} \right\} \\&\quad = \int \limits _0^{{\bar{\Delta }} } {{F_{{k_{tl}}}}\left( {\frac{{\left( {{\bar{\Delta }} - x} \right) {\sigma _l}}}{{\left[ {{\beta _l} - \left( {{\bar{\Delta }} - x} \right) {\beta _u}} \right] {P_u}}}} \right) \frac{{{\sigma _l}}}{{{P_l}}}{f_{{k_{ll}}}}\left( {\frac{{{\sigma _l}x}}{{{P_l}}}} \right) dx} \\&\quad = \frac{{{\bar{\Delta }} {\sigma _l}}}{{2{P_l}}}\sum \limits _{m = 1}^M {\frac{\pi }{M}\sqrt{1 - \psi _m^2} } {F_{{k_{tl}}}}\left( {\frac{{\left( {{\bar{\Delta }} - {\tau _m}} \right) {\sigma _l}}}{{\left[ {{\beta _l} - \left( {{\bar{\Delta }} - {\tau _m}} \right) {\beta _u}} \right] {P_u}}}} \right) \\&\quad {f_{{k_{ll}}}}\left( {\frac{{{\sigma _l}{\tau _m}}}{{{P_l}}}} \right) . \end{aligned} \end{aligned}$$
(77)

The last equalities in (76) and (77) come from the Gaussian–Chebyshev quadrature.

Secondly, \(\mathcal {G}_2\) is computed as

$$\begin{aligned} \begin{aligned} {{{\mathcal {G}}}_2}&= {\mathbb {P}} \left\{ {\Delta _{ll}}< {\bar{\Delta }},{\Delta _{lt}}< {\bar{\Delta }},{k_{tl}} \right. \\&\quad \left.<\frac{{\left( {{\bar{\Delta }} - {\Delta _{ll}}} \right) \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _l}}}{{\left[ {{\beta _l}{P_l}{k_{lt}} - \left( {{\bar{\Delta }} - {\Delta _{ll}}} \right) \left( {{\sigma _t} + {\beta _u}{P_l}{k_{lt}}} \right) } \right] {P_u}}}, \right. \\&\quad \left. {{\beta _l}{P_l}{k_{lt}} - \left( {{\bar{\Delta }} - {\Delta _{ll}}} \right) \left( {{\sigma _t} + {\beta _u}{P_l}{k_{lt}}} \right) > 0} \right\} \\&\quad + {\mathbb {P}} \left\{ {{\Delta _{ll}}< {\bar{\Delta }},{\Delta _{lt}}< {\bar{\Delta }},{\beta _l}{P_l}{k_{lt}} - \left( {{\bar{\Delta }} - {\Delta _{ll}}} \right) \left( {{\sigma _t} + {\beta _u}{P_l}{k_{lt}}} \right) \le 0} \right\} \\&\quad = {\mathbb {P}} \left\{ {{\bar{\Delta }} - \frac{{{\beta _l}{P_l}{k_{lt}}}}{{{\sigma _t} + {\beta _u}{P_l}{k_{lt}}}}< {\Delta _{ll}}< {\bar{\Delta }},{\Delta _{lt}}< {\bar{\Delta }},} \right. \\&\quad \left. {{k_{tl}}< \frac{{\left( {{\bar{\Delta }} - {\Delta _{ll}}} \right) \left( {{P_l}{k_{lt}} + {\sigma _t}} \right) {\sigma _l}}}{{\left[ {{\beta _l}{P_l}{k_{lt}} - \left( {{\bar{\Delta }} - {\Delta _{ll}}} \right) \left( {{\sigma _t} + {\beta _u}{P_l}{k_{lt}}} \right) } \right] {P_u}}}} \right\} \\&\quad + {\mathbb {P}} \left\{ {{\Delta _{lt}} < {\bar{\Delta }},{\Delta _{ll}} \le {\bar{\Delta }} - \frac{{{\beta _l}{P_l}{k_{lt}}}}{{{\sigma _t} + {\beta _u}{P_l}{k_{lt}}}}} \right\} \\&\quad = {{\mathcal {C}}} + {{\mathcal {D}}}, \end{aligned} \end{aligned}$$
(78)

where

$$\begin{aligned} \begin{aligned} {{\mathcal {C}}}&= \int \limits _0^{\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}} \left[ \int \limits _{{\bar{\Delta }} - \frac{{{\beta _l}{P_l}y}}{{\sigma _t}+{\beta _u}{P_l}y}} ^{{\bar{\Delta }} } {F_{{k_{tl}}}}\right. \left. \left( {\frac{{\left( {{\bar{\Delta }} - x} \right) \left( {{P_l}y + {\sigma _t}} \right) {\sigma _l}}}{{\left[ {{\beta _l}{P_l}y - \left( {{\bar{\Delta }} - x} \right) \left( {{\sigma _t} + {\beta _u}{P_l}y} \right) } \right] {P_u}}}} \right) \right. \left. \frac{{{\sigma _l}}}{{{P_l}}}{f_{{k_{ll}}}}\left( {\frac{{{\sigma _l}}}{{{P_l}}}x} \right) dx \right] {f_{{k_{lt}}}}\left( y \right) dy \\& = \frac{{{\bar{\Delta }} {\sigma _t}{\sigma _l}}}{{2P_l^2}}\sum \limits _{m = 1}^M {\frac{\pi }{M}\sqrt{1 - \psi _m^2} } \left[ {\frac{{{\beta _l}{P_l}{\lambda _m}{f_{{k_{lt}}}}\left( {{\lambda _m}} \right) }}{{2\left( {{\sigma _t} + {\beta _u}{P_l}{\lambda _m}} \right) }}\sum \limits _{v = 1}^V {\frac{\pi }{V}\sqrt{1 - \eta _v^2} } \times } \right. \\&\quad \left. {{F_{{k_{tl}}}}\left( {\frac{{\left( {{\bar{\Delta }} - {\phi _{vm}}} \right) \left( {{P_l}{\lambda _m} + {\sigma _t}} \right) {\sigma _l}}}{{\left[ {{\beta _l}{P_l}{\lambda _m} - \left( {{\bar{\Delta }} - {\phi _{vm}}} \right) \left( {{\sigma _t} + {\beta _u}{P_l}{\lambda _m}} \right) } \right] {P_u}}}} \right) {f_{{k_{ll}}}}\left( {\frac{{{\sigma _l}{\phi _{vm}}}}{{{P_l}}}} \right) } \right] \end{aligned} \end{aligned}$$
(79)

and

$$\begin{aligned} \begin{aligned} {{\mathcal {D}}}&= \int \limits _0^{\frac{{{\bar{\Delta }} {\sigma _t}}}{{{P_l}}}} {{F_{{k_{ll}}}}\left( {\left[ {{\bar{\Delta }} - \frac{{{\beta _l}{P_l}x}}{{{\sigma _t} + {\beta _u}{P_l}x}}} \right] \frac{{{\sigma _l}}}{{{P_l}}}} \right) {f_{{k_{lt}}}}\left( x \right) dx} \\&\quad = \frac{{{\bar{\Delta }} {\sigma _t}}}{{2{P_l}}}\sum \limits _{m = 1}^M {\frac{\pi }{M}\sqrt{1 - \psi _m^2} } {F_{{k_{ll}}}}\left( {\left[ {{\bar{\Delta }} - \frac{{{\beta _l}{P_l}{\lambda _m}}}{{{\sigma _t} + {\beta _u}{P_l}{\lambda _m}}}} \right] \frac{{{\sigma _l}}}{{{P_l}}}} \right) \\&\quad {f_{{k_{lt}}}}\left( {{\lambda _m}} \right) \end{aligned} \end{aligned}$$
(80)

with \({\phi _{vm}} = {{{\bar{\Delta }} }} + \frac{{{\beta _l}{P_l}{\lambda _m}\left( {{\eta _v} - 1} \right) }}{{2\left( {{\sigma _t} + {\beta _u}{P_l}{\lambda _m}} \right) }}\).

The last equalities in (79) and (80) come from the Gaussian–Chebyshev quadrature.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le-Thanh, T., Ho-Van, K. Performance analysis of overlay-based cognitive radio networks with MRC/SC and DT/AF/DF. Wireless Netw 29, 3839–3860 (2023). https://doi.org/10.1007/s11276-023-03446-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03446-x

Keywords

Navigation