Skip to main content
Log in

Expected distortion of simultaneous transmission of multiple source symbols with multicarrier frequency hopping modulation

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we consider the problem of transmitting a Gaussian source over a slow-fading channel, when the aim is to adjust system parameters so that the source is reconstructed with minimum expected distortion. In the considered scenario, the spatial distribution of users is modelled by a homogeneous Poisson point process. These users transmit their symbols by means of multicarrier frequency hopping modulation in which the frequency diversity characteristic is implemented by dividing the available bandwidth into several subbands where each subband consists of several subchannels. The number of subbands has a significant effect on the improvement of the system’s performance. We can have as many descriptions as the number of available subbands. In this way, we consider a combination of symmetric multiple description coding as the source coding and direct channel transmission coding as the channel coding so as to code the source signal into several descriptions which have the same number as the subbands. Considering separate source-channel coding strategy, we compute the expected distortion and evaluate the effects of system parameters on it. Furthermore, with the goal of minimizing the expected distortion, the optimum values of some system parameters in general and also for the case where the bandwidth expansion ratio is equal to one, are calculated. Through the optimization process, the optimum number of subbands and the optimum value of source coding rate are determined which lead to a significant improvement in the network performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Agarwal, M., Puri, R., & Honig, M. L. (2010). Wideband fading channel capacity with training and partial feedback. IEEE Transactions on Information Theory, 56(10), 4865–4873. https://doi.org/10.1109/TIT.2010.2059719.

    Article  MathSciNet  MATH  Google Scholar 

  2. Lance, E., & Kaleh, G. K. (1997). A diversity scheme for a phase-coherent frequency-hopping spread-spectrum system. IEEE Transactions on Communications, 45(9), 1123–1129. https://doi.org/10.1109/26.623078.

    Article  Google Scholar 

  3. Ebrahimi, M., & Nasiri-kenari, M. (2004). Performance analysis of multicarrier frequency-hopping (MC-FH) code-division multiple-access systems: Uncoded and coded schemes. IEEE Transactions on Vehicular Technology, 53(4), 968–981. https://doi.org/10.1109/TVT.2004.830154.

    Article  Google Scholar 

  4. Zeinalpour-Yazdi, Z., & Nasiri-kenari, M. (2004). Performance comparison of coherent and non-coherent multicarrier frequency-hopping code division multiple-access systems. In 15th IEEE international symposium on personal, indoor and mobile radio communications, 2004. PIMRC 2004 (Vol. 1, pp. 165–169). https://doi.org/10.1109/PIMRC.2004.1370857.

  5. Zeinalpour-Yazdi, Z., & Jalali, S. (2013). On expected capacity of multicarrier frequency hopping systems. In 2013 Iran workshop on communication and information theory (pp. 1–60). https://doi.org/10.1109/IWCIT.2013.6555768.

  6. Nikjah, R., & Beaulieu, N. C. (2008). On antijamming in general CDMA systems—Part ii: Antijamming performance of coded multicarrier frequency-hopping spread spectrum systems. IEEE Transactions on Wireless Communications, 7(3), 888–897. https://doi.org/10.1109/TWC.2008.060627.

  7. Harris, F., Chen, X., & Venosa, E. (2015). Efficient implementation of multicarrier frequency hopping receiver via polyphase channelizer. In 2015 IEEE military communications conference, MILCOM 2015 (pp. 826–830). https://doi.org/10.1109/MILCOM.2015.7357547.

  8. Fang, J., You, Z., Lu, I. T, Li, J., & Yang, R. (2013). Comparisons of filter bank multicarrier systems. In 2013 IEEE Long Island systems, applications and technology conference (LISAT) (pp. 1–6). https://doi.org/10.1109/LISAT.2013.6578232.

  9. Lixia, M., Murroni, M., & Popescu, V. (2010). PAPR reduction in multicarrier modulations using genetic algorithms. In 2010 12th international conference on optimization of electrical and electronic equipment (OPTIM) (pp. 938–942). https://doi.org/10.1109/OPTIM.2010.5510543.

  10. Muayyadi, A., & Abu-Rgheff, M. A. (2003). Wavelet-based multicarrier CDMA system and its corresponding multi-user detection. IEE Proceedings-Communications, 150(6), 445–452. https://doi.org/10.1049/ip-com:20030715.

  11. Hadi, S. Q., Ehkan, P., Anuar, M. S., & Dawood, S. A. (2016). Discrete framelet transform based OFDM system using N-FRAT mapping over Rayleigh fading channel. Wireless Networks. https://doi.org/10.1007/s11276-016-1367-z.

    Google Scholar 

  12. Zeinalpour-Yazdi, Z., & Jalali, S. (2014). Outage analysis of uplink two-tier networks. IEEE Transactions on Communications, 62(9), 3351–3362. https://doi.org/10.1109/TCOMM.2014.2337871.

    Article  Google Scholar 

  13. Renzo, M. D., & Guan, P. (2016). Stochastic geometry modeling and system-level analysis of uplink heterogeneous cellular networks with multi-antenna base stations. IEEE Transactions on Communications, 64(6), 2453–2476. https://doi.org/10.1109/TCOMM.2016.2552163.

    Article  Google Scholar 

  14. Effros, M., Goldsmith, A., & Liang, Y. (2010). Generalizing capacity: New definitions and capacity theorems for composite channels. IEEE Transactions on Information Theory, 56(7), 3069–3087. https://doi.org/10.1109/TIT.2010.2048456.

    Article  MathSciNet  MATH  Google Scholar 

  15. Pradhan, S. S., Puri, R., & Ramchandran, K. (2004). n-channel symmetric multiple descriptions—Part I: (n, k) source-channel erasure codes. IEEE Transactions on Information Theory, 50(1), 47–61. https://doi.org/10.1109/TIT.2003.821998.

    Article  MathSciNet  MATH  Google Scholar 

  16. Oohama, Y. (2016). Exponent function for Wyner–Ziv source coding problem at rates below the rate distortion function. In 2016 international symposium on information theory and its applications (ISITA) (pp. 171–175).

  17. Liang, Y., Goldsmith, A. J., & Effros, M. (2008). Generalized capacity and source-channel coding for packet erasure channels. In IEEE global telecommunications conference, 2008. IEEE GLOBECOM 2008 (pp. 1–5). https://doi.org/10.1109/GLOCOM.2008.ECP.188.

  18. Effros, M., & Goldsmith, A. J. (1998). Capacity definitions and coding strategies for general channels with receiver side information. In 1998 IEEE international symposium on information theory, 1998. Proceedings (p. 39). https://doi.org/10.1109/ISIT.1998.708619.

  19. Ahlswede, R. (1968). The weak capacity of averaged channels. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 11(1), 61–73.

    Article  MathSciNet  MATH  Google Scholar 

  20. Aguerri, I. E., & Gündüz, D. (2016). Distortion exponent in MIMO fading channels with time-varying source side information. IEEE Transactions on Information Theory, 62(6), 3597–3617. https://doi.org/10.1109/TIT.2016.2549037.

    Article  MathSciNet  MATH  Google Scholar 

  21. Ng, C. T. K., Gündüz, D., Goldsmith, A. J., & Erkip, E. (2007). Minimum expected distortion in Gaussian layered broadcast coding with successive refinement. In IEEE international symposium on information theory, 2007. ISIT 2007 (pp. 2226–2230). https://doi.org/10.1109/ISIT.2007.4557165.

  22. Ng, C. T. K., Gündüz, D., Goldsmith, A. J., & Erkip, E. (2007). Recursive power allocation in Gaussian layered broadcast coding with successive refinement. In IEEE international conference on communications, 2007. ICC ’07 (pp. 889–896). https://doi.org/10.1109/ICC.2007.151.

  23. Venkataramani, R., Kramer, G., & Goyal, V. K. (2003). Multiple description coding with many channels. IEEE Transactions on Information Theory, 49(9), 2106–2114. https://doi.org/10.1109/TIT.2003.815767.

    Article  MathSciNet  MATH  Google Scholar 

  24. Veetil, S. T., Kuchi, K., & Ganti, R. K. (2015). Performance of PZF and MMSE receivers in cellular networks with multi-user spatial multiplexing. IEEE Transactions on Wireless Communications, 14(9), 4867–4878. https://doi.org/10.1109/TWC.2015.2427802.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zolfa Zeinalpour-Yazdi.

Appendix

Appendix

The channel coefficients have Rayleigh distribution; therefore, the squared fading coefficients have an exponential distribution, i.e;

$$\begin{aligned} p\left( |\gamma _{o,i}|^{2}> x\right) =e^{-\frac{x}{\acute{\sigma }^{2}}}. \end{aligned}$$
(24)

Thus

$$\begin{aligned} p(SINR_{i}>T)&=p\left[ \frac{|\gamma _{o,i}|^{2} \left( \frac{P_{t}}{n_{s}} \right) }{PL_{o} \left( I_{i}+\sigma ^{2}_{n} \right) }>T \right] \\&=E_{I_{i}} \left[ p \left( |\gamma _{o,i}|^{2}>\frac{Tn_{s}r_{o}^{\alpha }L_{0} (I_{i}+\sigma ^{2}_{n})}{P_{t}} \right) \right] \\&=E_{I_{i}} \left( e^{-\frac{n_{s}Tr_{o}^{\alpha }L_{0}}{\acute{\sigma }^{2}P_{t}}(I_{i}+\sigma ^{2}_{n}) } \right) =E_{I_{i}} \left( e^{-sI_{i}} \right) e^{-s\sigma ^{2}_{n} } , \end{aligned}$$
(25)

where \(s\,\triangleq\,\frac{n_{s}Tr_{o}^{\alpha }L_{0}}{\acute{\sigma }^{2}P_{t}}.\) According to (2), we have

$$\begin{aligned} E_{I_{i}} \left( e^{-sI_{i}} \right) =\lim _{R\rightarrow \infty }e^ {\frac{-\lambda \pi R^{2}}{n_{h}} } \sum _{n=0}^{\infty }\frac{\left( \frac{\lambda \pi R^{2}}{n_{h}} \right) ^{n} E \left( e^ {-s\frac{P_{t}|\gamma _{j,i}|^{2}r_{j,i}^{-\alpha }}{L_{0}n_{s}} } \right) ^{n}}{n!}, \end{aligned}$$

where

$$\begin{aligned} E \left[ e^ {-s\frac{P_{t}|\gamma _{j,i}|^{2}r_{j,i}^{-\alpha }}{L_{0}n_{s}} } \right]&=E_{r_{j,i}} \left[ E_{|\gamma _{j,i}|^{2}} \left\{ e^ {-s\frac{P_{t}|\gamma _{j,i}|^{2}r_{j,i}^{-\alpha }}{L_{0}n_{s}} } \right\} |r_{j,i} \right] \\&=E_{r_{j,i}} \left[ \frac{1}{\acute{\sigma }^{2} \left( \frac{1}{\acute{\sigma }^{2}}+s\frac{P_{t}r_{j,i}^{-\alpha }}{L_{0}n_{s}} \right) } \right] \\&\overset{(a)}{=}\frac{1}{\pi R^{2}}\int _{0}^{R}\frac{2\pi u}{\left( 1+\acute{\sigma }^{2}s\frac{P_{t}u^{-\alpha }}{L_{0}n_{s}} \right) } du, \end{aligned}$$

which (a) is obtained based on (3). Therefore, we have

$$\begin{aligned} E_{I_{i}} \left( e^{-sI_{i} } \right)&=\lim _{R\rightarrow \infty }e^{\frac{-\lambda \pi R^{2}}{n_{h}}+\frac{2\lambda \pi }{n_{h}}\int _{0}^{R}\frac{u}{\left( 1+\acute{\sigma }^{2}s\frac{P_{t}u^{-\alpha }}{L_{0}n_{s}} \right) } du }=e^ {-\frac{2\pi ^{2}\lambda \left( \frac{\acute{\sigma }^{2}s P_{t}}{L_{0}n_{s}} \right) ^{\frac{2}{\alpha }}}{n_{h}\alpha \sin \left( \frac{2\pi }{\alpha } \right) } }. \end{aligned}$$
(26)

Finally, by substituting, (26) in (25) we obtain

$$\begin{aligned} p_{cov}=p ( SINR_{i}>T ) =e^ {-\frac{Tn_{s}L_{0}r_{o}^{\alpha }\sigma _{n}^{2}}{P_{t}\acute{\sigma }^{2}}-\frac{2\pi ^{2}\lambda r_{o}^{2}T^{\frac{2}{\alpha }}}{n_{h}\alpha \sin \left( \frac{2\pi }{\alpha } \right) } }. \end{aligned}$$

By considering \(p_{out}=1-p_{cov}\), we have

$$\begin{aligned} p_{out}=1-e^ {-\frac{Tn_{s}L_{0}r_{o}^{\alpha }\sigma _{n}^{2}}{P_{t}\acute{\sigma }^{2}}-\frac{2\pi ^{2}\lambda r_{o}^{2}T^{\frac{2}{\alpha }}}{n_{h}\alpha \sin \left( \frac{2\pi }{\alpha } \right) } }. \end{aligned}$$
(27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manouchehri, S., Zeinalpour-Yazdi, Z. Expected distortion of simultaneous transmission of multiple source symbols with multicarrier frequency hopping modulation. Wireless Netw 25, 2473–2483 (2019). https://doi.org/10.1007/s11276-018-1677-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1677-4

Keywords

Navigation