Skip to main content
Log in

Abstract

Based on the packing density of cross-polytopes in \({\mathbb {R}}^n\), more than 50 years ago Golomb and Welch proved that the packing density of Lee spheres in \({\mathbb {Z}}^n\) must be strictly smaller than 1 provided that the radius r of the Lee sphere is large enough compared with n, which implies that there is no perfect Lee code for the corresponding parameters r and n. In this paper, we investigate the lattice packing density of Lee spheres with fixed radius r for infinitely many n. First we present a method to verify the nonexistence of the second densest lattice packing of Lee spheres of radius 2. Second, we consider the constructions of lattice packings with density \(\delta _n\rightarrow \frac{2^r}{(2r+1)r!}\) as \(n\rightarrow \infty \). When \(r=2\), the packing density can be improved to \(\delta _n\rightarrow \frac{2}{3}\) as \(n\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. AlBdaiwi B.F., Bose B.: Quasi-perfect Lee distance codes. IEEE Trans. Inform. Theory 49(6), 1535–1539 (2003).

    Article  MathSciNet  Google Scholar 

  2. Albert A.A.: Generalized twisted fields. Pac. J. Math. 11, 1–8 (1961).

    Article  MathSciNet  Google Scholar 

  3. Bajnok B.: Additive Combinatorics: A Menu of Research Problems. Chapman and Hall/CRC, New York (2018).

    Book  Google Scholar 

  4. Beck M., Robins S.: Computing the Continuous Discretely, 2nd edn Undergraduate Texts in Mathematics. Springer, New York (2015).

    Book  Google Scholar 

  5. Bluher A.W.: On \(x^{q+1}+ax+b\). Finite Fields Appl. 10(3), 285–305 (2004).

    Article  MathSciNet  Google Scholar 

  6. Bose R.C., Chowla S.: Theorems in the additive theory of numbers. Comment. Math. Helv. 37(1), 141–147 (1962).

    Article  MathSciNet  Google Scholar 

  7. Camarero C., Martínez C.: Quasi-perfect Lee codes of radius 2 and arbitrarily large dimension. IEEE Trans. Inform. Theory 62(3), 1183–1192 (2016).

    Article  MathSciNet  Google Scholar 

  8. Dembowski P., Ostrom T.G.: Planes of order \(n\) with collineation groups of order \(n^2\). Math. Z. 103, 239–258 (1968).

    Article  MathSciNet  Google Scholar 

  9. Dougherty R., Faber V.: The degree-diameter problem for several varieties of Cayley graphs I: the abelian case. SIAM J. Discret. Math. 17(3), 478–519 (2004).

    Article  MathSciNet  Google Scholar 

  10. Ghinelli D., Jungnickel D.: Finite projective planes with a large abelian group. In Surveys in combinatorics, 2003 (Bangor), volume 307 of London Mathematical Society Lecture Note Series, page 175–237. Cambridge University Press, Cambridge, 2003.

  11. Golomb S.W., Welch L.R.: Perfect codes in the Lee metric and the packing of polyominoes. SIAM J. Appl. Math. 18(2), 302–317 (1970).

    Article  MathSciNet  Google Scholar 

  12. Helleseth T., Kholosha A.: On the equation \(x^{2^l+1}+x+a=0\) over \(\rm GF (2^k)\). Finite Fields Appl. 14(1), 159–176 (2008).

    Article  MathSciNet  Google Scholar 

  13. Horak P., Grošek O.: A new approach towards the Golomb–Welch conjecture. Eur. J. Combinat. 38, 12–22 (2014).

    Article  MathSciNet  Google Scholar 

  14. Horak P., Kim D.: 50 years of the Golomb–Welch conjecture. IEEE Trans. Inform. Theory 64(4), 3048–3061 (2018).

    Article  MathSciNet  Google Scholar 

  15. Hou X.-D.: Lectures on Finite Fields. American Mathematical Society, Providence (2018).

    Book  Google Scholar 

  16. Kim D.: Nonexistence of perfect 2-error-correcting Lee codes in certain dimensions. Eur. J. Combinat. 63, 1–5 (2017).

    Article  MathSciNet  Google Scholar 

  17. Kim K.H., Choe J., Mesnager S.: Solving \(x^{q+1}+x+a=0\) over finite fields. Finite Fields Appl. 70, 101797 (2021).

    Article  Google Scholar 

  18. Kovačević M.: Lattice packings of cross-polytopes from Reed-Solomon codes and Sidon sets. Bull. Lond. Math. Soc. 54(6), 2372–2378 (2022).

    Article  MathSciNet  Google Scholar 

  19. Leung K.H., Zhou Y.: No lattice tiling of \(\mathbb{Z} ^n\) by Lee sphere of radius 2. J. Combinat. Theory Ser. A 171, 105157 (2020).

    Article  Google Scholar 

  20. Lidl R., Niederreiter H.: Finite Fields, vol. 20, 2nd edn Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1997).

    Google Scholar 

  21. Mesnager S., Tang C., Qi Y.: 2-Correcting lee codes: (quasi)-perfect spectral conditions and some constructions. IEEE Trans. Inform. Theory 64(4), 3031–3041 (2018).

    Article  MathSciNet  Google Scholar 

  22. Pott A., Zhou Y.: Cayley graphs of diameter two from difference sets. J. Graph Theory 85(2), 533–544 (2017).

    Article  MathSciNet  Google Scholar 

  23. Qureshi C.: On the non-existence of linear perfect Lee codes: the Zhang–Ge condition and a new polynomial criterion. Eur. J. Combinat. 83, 103022 (2020).

    Article  MathSciNet  Google Scholar 

  24. Stanton R., Cowan D.: Note on a “square’’ functional equation. SIAM Rev. 12(2), 277–279 (1970).

    Article  MathSciNet  Google Scholar 

  25. Timmons C.: Upper and lower bounds for \(B_k^+\)-sets. Integers 1, 14 (2014).

    MathSciNet  Google Scholar 

  26. Tóth G.F., Fodor F., Vígh V.: The packing density of the \(n\)-dimensional cross-polytope. Discret. Comput. Geom. 54(1), 182–194 (2015).

    Article  MathSciNet  Google Scholar 

  27. Xu X., Zhou Y.: On almost perfect linear Lee codes of packing radius 2. IEEE Trans. Inform. Theory 69(10), 6279–6292 (2023).

    Article  MathSciNet  Google Scholar 

  28. Zhang T., Ge G.: Perfect and quasi-perfect codes under the \(l_p\) metric. IEEE Trans. Inform. Theory 63(7), 4325–4331 (2017).

    Article  MathSciNet  Google Scholar 

  29. Zhang T., Zhou Y.: On the nonexistence of lattice Tilings of \(\mathbb{Z} ^n\) by Lee spheres. J. Combinat. Theory Ser. A 165, 225–257 (2019).

    Article  Google Scholar 

  30. Zhou Y.: \((2^n,2^n,2^n,1)\)-relative difference sets and their representations. J. Combinat. Des. 21(12), 563–584 (2013).

    Article  Google Scholar 

  31. Zhou Y.: Difference sets from projective planes. PhD thesis, Otto-von-Guericke University, Magdeburg, 2013.

  32. Zhou Z., Zhou Y.: Almost perfect linear Lee codes of packing radius 2 only exist for small dimensions. http://arxiv.org/abs/2210.04550, (2022).

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 12371337), the Science and Technology Innovation Program of Hunan Province (No. 2023RC1003) and the Training Program for Excellent Young Innovators of Changsha (No. kq2106006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhou.

Additional information

Communicated by T. Etzion.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, A., Zhou, Y. On the packing density of Lee spheres. Des. Codes Cryptogr. (2024). https://doi.org/10.1007/s10623-024-01410-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10623-024-01410-0

Keywords

Mathematics Subject Classification

Navigation