Skip to main content
Log in

d-Tyrosine enhancement of microbiocide mitigation of carbon steel corrosion by a sulfate reducing bacterium biofilm

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbiocides are used to control problematic microorganisms. High doses of microbiocides cause environmental and operational problems. Therefore, using microbiocide enhancers to make microbiocides more efficacious is highly desirable. 2,2-dibromo-3-nitrilopropionamide (DBNPA) is a popular biodegradable microbiocide. d-Amino acids have been used in lab tests to enhance microbiocides to treat microbial biofilms. In this investigation, d-tyrosine was used to enhance DBNPA against Desulfovibrio vulgaris biofilm on C1018 carbon steel. After 7 days of incubation, the mass loss of coupons without treatment chemicals in the ATCC 1249 culture medium was found to be 3.1 ± 0.1 mg/cm2. With 150 ppm (w/w) DBNPA in the culture medium, the mass loss was reduced to 1.9 ± 0.1 mg/cm2 accompanied by a 1-log reduction in the sessile cell count. The 150 ppm DBNPA + 1 ppm d-tyrosine combination attained an extra 3-log reduction in sessile cell count and an additional 30% reduction in mass loss compared with 150 ppm DBNPA only treatment. The combination also led to a smaller maximum pit depth. Linear polarization resistance (LPR), electrochemical impedance spectrometry (EIS), and potentiodynamic polarization (PDP) tests corroborated the enhancement effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • ASTM-G1-03 (2011) Standard practice for preparing, cleaning, and evaluating corrosion test specimens

  • Cwalina B, Dec W, Michalska JK, Jaworska-Kik M, Student S (2017) Initial stage of the biofilm formation on the NiTi and Ti6Al4V surface by the sulphur-oxidizing bacteria and sulphate-reducing bacteria. J Mater Sci Mater Med 28:173

    Article  Google Scholar 

  • Gu T, Jia R, Unsal T, Xu D (2019) Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria. J Mater Sci Technol 35:631–636

    Article  Google Scholar 

  • Ilhan-Sungur E, Unsal-Istek T, Cansever N (2015) Microbiologically influenced corrosion of galvanized steel by Desulfovibrio sp. and Desulfosporosinus sp. in the presence of Ag–Cu ions. Mater Chem Phys 162:839–851

    Article  CAS  Google Scholar 

  • Jia R, Yang D, Li Y et al (2017a) Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethylbenzylammonium chloride enhanced by d-amino acids. Int Biodeter Biodegr 117:97–104

    Article  CAS  Google Scholar 

  • Jia R, Yang D, Xu D, Gu T (2017b) Mitigation of a nitrate reducing Pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by d-tyrosine. Sci Rep 7:6946

    Article  Google Scholar 

  • Jia R, Yang D, Xu D, Gu T (2017c) Anaerobic corrosion of 304 stainless steel caused by the Pseudomonas aeruginosa biofilm. Front Microbiol 8:2335

    Article  Google Scholar 

  • Jia R, Yang D, Abd Rahman HB, Gu T (2018a) An enhanced oil recovery polymer promoted microbial growth and accelerated microbiologically influenced corrosion against carbon steel. Corros Sci 139:301–308

    Article  CAS  Google Scholar 

  • Jia R, Yang D, Xu D, Gu T (2018b) Carbon steel biocorrosion at 80 °C by a thermophilic sulfate reducing archaeon biofilm provides evidence for its utilization of elemental iron as electron donor through extracellular electron transfer. Corros Sci 145:47–54

    Article  CAS  Google Scholar 

  • Jia R, Wang D, Jin P et al (2019) Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris. Corros Sci 153:127–137

    Article  CAS  Google Scholar 

  • Li SY, Kim YG, Jeon KS et al (2001) Microbiologically influenced corrosion of carbon steel exposed to anaerobic soil. Corrosion 57:815–828

    Article  CAS  Google Scholar 

  • Li H, Xu D, Li Y et al (2015) Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris. PLoS ONE 10:e0136183

    Article  Google Scholar 

  • Liu X, Li Z, Fan Y et al (2020) A mixture of d-amino acids enhances the biocidal efficacy of CMIT/MIT against corrosive Vibrio harveyi biofilm. Front Microbiol 11:557435

    Article  Google Scholar 

  • Marsili E, Baron DB, Shikhare ID et al (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci 105:3968–3973

    Article  CAS  Google Scholar 

  • Mukhopadhyay A, He Z, Alm EJ et al (2006) Salt Stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. J Bacteriol 188:4068–4078

    Article  CAS  Google Scholar 

  • Siddiqui A, Pinel I, Prest EI et al (2017) Application of DBNPA dosage for biofouling control in spiral wound membrane systems. Desalin Water Treat 68:12–22

    Article  CAS  Google Scholar 

  • Tan JL, Goh PC, Blackwood DJ (2017) Influence of H2S-producing chemical species in culture medium and energy source starvation on carbon steel corrosion caused by methanogens. Corros Sci 119:102–111

    Article  CAS  Google Scholar 

  • Thauer RK, Stackebrandt E, Hamilton WA (2007) Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria. Cambridge University Press, Cambridge, pp 1–38

    Google Scholar 

  • Tschech A, Schink B (1986) Fermentative degradation of monohydroxybenzoates by defined syntrophic cocultures. Arch Microbiol 145:396–402

    Article  CAS  Google Scholar 

  • Unsal T, Jia R, Kumseranee S et al (2019) Laboratory investigation of microbiologically influenced corrosion of carbon steel in hydrotest using enriched artificial seawater inoculated with an oilfield biofilm consortium. Eng Fail Anal 100:544–555

    Article  CAS  Google Scholar 

  • Videla HA (2002) Prevention and control of biocorrosion. Inter Biodeter Biodegr 49:259–270

    Article  CAS  Google Scholar 

  • Wang D, Liu J, Jia R, Dou W, Kumseranee S, Punpruk S, Gu T, Li X (2020) Distinguishing two different microbiologically influenced corrosion (MIC) mechanisms using an electron mediator and hydrogen vvolution detection. Corros Sci 177:108993

    Article  CAS  Google Scholar 

  • Xu D, Gu T (2014) Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Inter Biodeter Biodegr 91:74–81

    Article  CAS  Google Scholar 

  • Xu D, Li Y, Gu T (2012) A synergistic d-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm. World J Microbiol Biotechnol 28:3067–3074

    Article  CAS  Google Scholar 

  • Xu D, Li Y, Gu T (2016) Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry 110:52–58

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financed by PTT Exploration and Production, Thailand. T. Unsal was funded by The Scientific and Technological Research Council of Turkey (TUBITAK-2219). Parts of this work were from Corrosion/2020 Conference Paper 2020-14527 with permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unsal, T., Wang, D., Kumseranee, S. et al. d-Tyrosine enhancement of microbiocide mitigation of carbon steel corrosion by a sulfate reducing bacterium biofilm. World J Microbiol Biotechnol 37, 103 (2021). https://doi.org/10.1007/s11274-021-03072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-021-03072-9

Keywords

Navigation