Skip to main content

Advertisement

Log in

Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Salinity stress is one of the key constraints for sustainable crop production. It has gained immense importance in the backdrop of climate change induced imbalanced terrestrial water budgets. The traditional agronomic approaches and breeding salt-tolerant genotypes have often proved insufficient to alleviate salinity stress. Newer approaches like the use of bacterial endophytes associated with agricultural crops have occupied center place recently, owing to their advantageous role in improving crop growth, health and yield. Research evidences have revealed that bacterial endophytes can promote plant growth by accelerating availability of mineral nutrients, helping in production of phytohormones, siderophores, and enzymes, and also by activating systemic resistance against insect pest and pathogens in plants. These research developments have opened an innovative boulevard in agriculture for capitalizing bacterial endophytes, single species or consortium, to enhance plant salt tolerance capabilities, and ultimately lead to translational refinement of crop-production business under salty environments. This article reviews the latest research progress on the identification and functional characterization of salt tolerant endophytic bacteria and illustrates various mechanisms triggered by them for plant growth promotion under saline environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodice C, Rangel WM, Nicolaus B, Vangronsveld J (2016) Plant growth promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric 3(1):1

    Google Scholar 

  • Abbasi GH, Akhtar J, Haq MA, Malik W, Ali S, Chen ZH, Zhang G (2015) Morpho-physiological and micrographic characterization of maize hybrids under NaCl and Cd stress. Plant Growth Regul 75:115–122

    CAS  Google Scholar 

  • Abd_Allah EF, Hashem A, Alqarawi AA, Alwhibi MS (2015) Alleviation of adverse impact of salt in Phaseolus vulgaris L. by arbuscular mycorrhizal fungi. Pak J Bot 47:1167–1176

    CAS  Google Scholar 

  • Abd_Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail AA, Al-Otibi FON, Malik JA, Alharbi RI, Egamberdieva D (2018) Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Interact 13(1):37–44

    CAS  Google Scholar 

  • Abedinzadeh M, Etesami H, Alikhani HA (2019) Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnol Rep (Amst). 21:e00305

    PubMed  PubMed Central  Google Scholar 

  • Afridi MS, Amna S, Mahmood T, Salam A, Mukhtar T, Mahmood S, Ali J, Khatoon Z, Bibi M, Javed MT, Sultan T, Chaudhary HJ (2019) Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem 139:569–577

    CAS  PubMed  Google Scholar 

  • Agami RA, Medani RA, Abd El-Mola IA, Taha RS (2016) Exogenous application with plant growth promoting rhizobacteria (PGPR) or proline induces stress tolerance in basil plants (Ocimum basilicum L) exposed to water stress. Int J Environ Agri Res 2(5):78–92

    Google Scholar 

  • Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal RM (2017) Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plants 23(4):731–744

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Jaleel CA, Sharma S ((2012) ) Antioxidant defense system, lipid peroxidation, proline metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russian J Plant Physiol 57(4):(4):509–1575–517

    CAS  Google Scholar 

  • Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soilsTrakia J Sci 9(1):43–50

    Google Scholar 

  • Akhtar SS, Andersen MN, Naveed M, Zahir ZA, Liu F (2015) Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Funct Plant Biol 42:770–781

    CAS  PubMed  Google Scholar 

  • Aleklett K, Hart M, Shade A (2014) The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany 92:253–266

    Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    CAS  PubMed  Google Scholar 

  • Ali A, Shahzad R, Latif Khan A, Halo BA, Al-Yahyai R, Al-Harrasi A, Al-Rawahi A, Lee I-J (2017) Endophytic bacterial diversity of Avicennia marina helps to confer resistance against salinity stress in Solanum lycopersicum. J Plant Interact 12(1):312–322

    CAS  Google Scholar 

  • Alqarawi AA, Abd-Allah EF, Hashem A (2014) Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interact 9(1):802–810

    Google Scholar 

  • Alquéres SM, Oliveira JH, Nogueira EM, Guedes HV, Oliveira PL, Oliveira PL, Câmara F, Baldani JI, Martins OB (2010) Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in Gluconacetobacter diazotrophicus. Arch Microbiol 192:835–841

    PubMed  PubMed Central  Google Scholar 

  • Amjad M, Akhtar J, Anwar-ul-Haq M, Yang A, Akhtar SS, Jacobsen SE (2016) Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Sci Hortic 172:109–116

    CAS  Google Scholar 

  • Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PAV, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    PubMed  Google Scholar 

  • Asaf S, Khan AL, Khan MA, Al-Harrasi A, Lee I-J (2018) Complete genome sequencing and analysis of endophytic Sphingomonas sp LK11 and its potential in plant growth. 3 Biotech 8(9):389

    PubMed  PubMed Central  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Google Scholar 

  • Bacon CW, Hinton DM (2006) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 155–194

    Google Scholar 

  • Balachandar D, Sandhiya GS, Sugitha TCK, Kumar K (2006) Flavonoids and growth hormones influence endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice. World J Microbiol Biotechnol 22:707–712

    CAS  Google Scholar 

  • Batut J, Andersson SGE, O'Callaghan D (2004) The evolution of chronic infection strategies in the alpha-proteobacteria. Nat Rev Microbiol 2:933–945

    CAS  PubMed  Google Scholar 

  • Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320

    Google Scholar 

  • Beneduzi A, Moreira F, Costa PB, Vargas LK, Lisboa BB, Favreto R, Baldani JI, Passaglia LMP (2013) Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Appl Soil Ecol 63:94–104

    Google Scholar 

  • Bhardwaj AK, Rajwar D, Nagaraja MS (2019a) Soil fertility problems and their management in salt-affected soils. In: Minhas PS, Yadav RK. Sharma PC (eds) Managing salt-affected soils for sustainable agriculture. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Bhardwaj AK, Mishra VK, Arora S, Srivastava S, Singh YP, Sharma DK (2019b) Soil salinity and land use-land cover interactions with soil carbon in a salt-affected irrigation canal command of Indo-Gangetic plain. CATENA 180:391–400

    Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzianatronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bibi F, Chung EJ, Yoon HS, Song GC, Jeon CO, Chung YR (2011) Haloferula luteola sp nov., an endophytic bacterium isolated from the root of a halophyte, Rosa rugosa, and emended description of the genus Haloferula. Int J Syst Evol Microbiol 61(8), 1837–41.

    Google Scholar 

  • Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 8(2):e56329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat Loren EV, Schulze-Lefert P ((2006) ) Ameliorative effects of biological treatments on growth of squash plants under salt stress. Sci Hort 111:1–6

    CAS  Google Scholar 

  • Bulgari D, Casati P, Crepaldi P, Daffonchio D, Quaglino F, Brusetti L, Bianco PA (2011) Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. Appl Environ Microbiol 77(14):5018–5022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmakci R, Dönmez MF, Erdoğan Ü (2007) The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk J Agric For 31(3):189–199

    CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Basnet M, Chakraborty AP (2009) Evaluation of Ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. J Appl Microbiol 107:625–634

    CAS  PubMed  Google Scholar 

  • Chartzoulakis KS (1994) Photosynthesis, water relations and leaf growth of cucumber exposed to salt stress. Sci Hort 59(1):27–35

    Google Scholar 

  • Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y, Zhang L (2017) Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 7:41564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918

    CAS  PubMed  Google Scholar 

  • Cheng D, Tian Z, Feng L, Xu L, Wang H (2019) Diversity analysis of the rhizospheric and endophytic bacterial communities of Senecio vulgaris L (Asteraceae) in an invasive range. Peer J. 6:e6162

    PubMed  PubMed Central  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, AitBarka E (2005) Endophytic colonization of Vitis vinifera L. by a plant growth promoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Kaplan H, Sessitsch A, Nowak J, AitBarka E, Clément C (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: From the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93

    CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    CAS  Google Scholar 

  • Conrath U (2006) Systemic acquired resistance. Plant Signal Behav 1(4):179–184

    PubMed  PubMed Central  Google Scholar 

  • de Oliveira Costa LE, de Queiroz MV, Borges AC, de Moraes CA, de Araújo EF (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43:1562–1575

    PubMed  PubMed Central  Google Scholar 

  • Debez A, Ben Hamed K, Grignon C, Abdelly C (2004) Salinity effects on germination, growth, and seed production of the halophyte Cakile maritime. Plant Soil 262:179–189

    CAS  Google Scholar 

  • Ding S, Huang C, Sheng H, Song C, Li Y, Li A (2011) Effect of inoculation with the endophyte Clavibactersp. strain Enf12 on chilling tolerance in Chorispora bungeana. Physiol Plant 141:141–151

    CAS  PubMed  Google Scholar 

  • Dong ZY, Rao MPN, Wang HF, Fang BZ, Li W-J (2018) Transcriptomic analysis of two endophytes involved in enhancing salt stress ability of Arabidopsis thaliana. Sci Total Environ 686:107–117

    Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty N, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112(8):E911–E920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov S, Lugtenberg B (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils 47:197–205

    CAS  Google Scholar 

  • Egamberdieva D, Wirth SJ, Shurigin VV, Hashem A, Abd-Allah EF (2017) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt Stress. Front Microbiol 8:1.

    Google Scholar 

  • El-Khawas H, Adachi K (1999) Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biol Fert Soil 28(4):377–381

    CAS  Google Scholar 

  • Emiliani G, Mengoni A, Maida I, Perrin E, Chiellini C, Fondi M, Gallo E, Gori L, Maggini V, Vannacci A, Biffi S (2014) Linking bacterial endophytic communities to essential oils: clues from Lavandula angustifolia Mill. Evid Based Complement Alternat Med 214:650905

    Google Scholar 

  • Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75:293–320

    CAS  PubMed  Google Scholar 

  • Etesami H, Beattie GA (2018) Mining Halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148

    PubMed  PubMed Central  Google Scholar 

  • Farouk S (2011) Osmotic adjustment in wheat flag leaf in relation to flag leaf area and grain yield per plant. J Stress Physiol Biochem 7(2):117–138

    Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169:13–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghorbanpour M, Hatami M, Khavazi K (2013) Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turk J Biol 37:350–360

    CAS  Google Scholar 

  • Glynou K, Nam B, Thines M, Maciá-Vicente JG (2018) Facultative root-colonizing fungi dominate endophytic assemblages in roots of non mycorrhizal Microthlaspi species. New Phytol 217(3):1190–1202

    PubMed  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    CAS  PubMed  Google Scholar 

  • Gregory PJ (2006) Plant roots: growth, activity and interaction with soils. Blackwell Publishing, Oxford

    Google Scholar 

  • Gupta RK, Abrol IP (2000) Salinity build-up and changes in the rice-wheat system of the Indo-Gangetic plains. Exp Agric 36:273–284

    Google Scholar 

  • Hakim MA, Juraimi AS, Hanafi MM, Ali E, Ismail MR, Selamat A, Karim SM (2014) Effect of salt stress on morpho-physiology, vegetative growth and yield of rice. J Environ Biol 35(2):317–326

    CAS  PubMed  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914

    CAS  Google Scholar 

  • Halo BA, Khan AL, Waqas M, Al-Harrasi A, Hussain J, Ali L, Adnan M, Lee I-J (2015) Endophytic bacteria (Sphingomonas sp LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J Plant Interact 10(1):117–125

    CAS  Google Scholar 

  • Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS ONE 7:e30438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    PubMed  PubMed Central  Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA, Wirth S, Egamberdieva D (2019) Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci 26(1):38–48

    CAS  PubMed  Google Scholar 

  • Huang Y (2018) Comparison of rhizosphere and endophytic microbial communities of Chinese leek through high-throughput 16S rRNA gene illumina sequencing. J Integr Argic 17(2):359–367

    CAS  Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768

    PubMed  PubMed Central  Google Scholar 

  • Jasrotia P, Kashyap PL, Bhardwaj AK, Kumar S, Singh GP (2018) Scope and applications of nanotechnology for wheat production: a review of recent advances. Wheat Barley Res 10(1):1–14

    Google Scholar 

  • Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microb Ecol 58:179–188

    CAS  PubMed  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Google Scholar 

  • Joe MM, Devaraj S, Benson A, Sa T (2016) Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarusSchum & Thonn: evaluation of plant growth promotion and antioxidant activity under salt stress. J Appl Res Med Aromat Plants 3(2):71–77

    Google Scholar 

  • Kandel SL, Joubert PM, Doty SL (2017) Bacterial endophyte colonization and distribution within plants. Microorganisms 5(4):77

    PubMed Central  Google Scholar 

  • Karthikeyan B, Joe MM, Islam MR, Sa TM (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56:77–86

    CAS  Google Scholar 

  • Kashyap PL, Rai P, Srivastava AK, Kumar S (2017) Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol 33:155

    PubMed  Google Scholar 

  • Kashyap PL, Srivastava AK, Tiwari SP, Kumar S (2018) Microbes for climate resilient agriculture. Wiley, Hoboken, p p376

    Google Scholar 

  • Kashyap PL, Solanki MK, Kushwaha P, Kumar S, Srivastava AK (2019) Biocontrol potential of salt-tolerant Trichoderma and Hypocrea isolates for the management of tomato root rot under saline environment. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-019-00114-y

    Article  Google Scholar 

  • Kennedy IR, Choudhury A, Kecskés ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    CAS  Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Böhm M, Friedrich F, Hurek T, Krause L, Linke B (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp strain BH72. Nat Biotechnol 24(11):1384

    Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6(12):1244–1251

    CAS  PubMed  Google Scholar 

  • Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6:60

    PubMed  PubMed Central  Google Scholar 

  • Kushwaha P, Kashyap PL, Kuppusamy P, Srivastava AK, Tiwari RK (2019a) Functional characterization of endophytic bacilli from pearl millet (Pennisetumglaucum) and their possible role in multiple stress tolerance. Plant Biosyst. https://doi.org/10.1080/11263504.2019.1651773

    Article  Google Scholar 

  • Kushwaha P, Kashyap PL, Srivastava AK, Tiwari RK (2019b) Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Braz J Microbiol. https://doi.org/10.1007/s42770-019-00172-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Larcher W (1980) Physiological plant ecology: ecophysiology and stress physiology of functional groups, 2nd edn. Springer, Berlin

    Google Scholar 

  • Lastochkina O, Pusenkova L, Yuldashev R, Babaev M, Garipova S, Blagova D, Khairullin R et al (2017) Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. Plant Physiol Biochem 121:80–88

    CAS  PubMed  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66(4):268–276

    CAS  PubMed  Google Scholar 

  • Li X, Geng X, Xie R, Fu L, Jiang J, Gao L, Sun J (2016) The endophytic bacteria isolated from elephant grass (Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of Hybrid Pennisetum. Biotechnol Biofuels. 9(1):190

    PubMed  PubMed Central  Google Scholar 

  • Liu WY, Chung KM, Wong CF, Jiang JW, Hui RK, Leung FC (2012) Complete genome sequence of the endophytic Enterobacter cloacae subsp cloacae strain ENHKU01. J Bacteriol 194(21):5965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Carvalhais LC, Schenk PM, Dennis PG (2017a) Effects of jasmonic acid signalling on the wheat microbiome differ between body sites. Sci Rep 7:41766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Wang X, Pu H, Liu S, Kan J, Jin C (2017b) Recent advances in endophytic exopolysaccharides: production, structural characterization, physiological role and biological activity. Carbohydr Polym 157:1113–1124

    CAS  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, Lelie DV (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21(6):583–606

    Google Scholar 

  • Long-fei Z, Ya-jun X, Xin-he L (2018) Effects of endophytic bacteria 252 and 254 on peroxidase (POD) and catalase (CAT) activities of wheat seedlings under salt stress. J Appl Ecol 28(9):2984–2992

    Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maropola MK, Ramond JB, Trindade M (2015) Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Methods 112:104–117

    CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Ann Bot 78(4):527–528

    Google Scholar 

  • Matos FS, Ribeiro RP, Neves TG, Anjos RAD, Silveira PSD, Cruvinel CKL, Juen L, Júnior HDT (2017) Growth of Jatropha curcas L plants under salt and nutrition stress. Afr J Agric Res 12(30):2468–2474

    CAS  Google Scholar 

  • Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol. 73(22):7259–7267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X, Yan D, Long X, Wang C, Liu Z, Rengel Z (2014) Colonization by endophytic Ochrobactrum anthropi Mn1 promotes growth of Jerusalem artichoke. Microbial Biotechnol 7:601–610

    CAS  Google Scholar 

  • Mengoni A, Pini F, Shu WS, Huang LN, Bazzicalupo M (2009) Plant-by-plant variations of leaf-associated bacterial communities in the nickel-hyperaccumulator Alyssum bertolonii Desv. Microb Ecol 58:660–667

    CAS  PubMed  Google Scholar 

  • Miliute I, Buzaite O, Baniulis D, Stanys V (2015) Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste-Agriculture 102(4):465–478

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    CAS  PubMed  Google Scholar 

  • Mocali S, Bertelli E, di Cello F, Mengoni A, Sfalanga A, Viliani F, Caciotti A, Tegli S, Surico G, Fani R (2003) Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Res Microbiol 154(2):105–114

    PubMed  Google Scholar 

  • Munns R, Rawson HM (1999) Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Aust J Plant Physiol 26:459–464

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev of Plant Biol 59(651):681

    Google Scholar 

  • Nathaniel-James DA, Frith CD (2002) The role of the dorsolateral prefrontal cortex: evidence from the effects of contextual constraint in a sentence completion task. Neuroimage 16(4):1094–1102

    CAS  PubMed  Google Scholar 

  • Navarro-Torre S, Barcia-Piedras JM, Mateos-Naranjo E, Redondo-Gómez S, Camacho M, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID (2017) Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance. Plant Biol (Stuttg) 19(2):249–256

    CAS  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11

    PubMed  Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811

    Google Scholar 

  • Nissinen R, Mannisto MK, van Elsas JD (2012) Endophytic bacteria communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific. FEMS Microbiol Ecol 82:510–522

    CAS  PubMed  Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33(11):197

    PubMed  PubMed Central  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Google Scholar 

  • Piernik A, Hrynkiewicz K, Wojciechowska A, Szymańska S, Lis MI, Muscolo A (2017) Effect of halotolerant endophytic bacteria isolated from Salicornia europaea L on the growth of fodder beet (Beta vulgaris L) under salt stress. Arch Agron Soil Sci 63(10):1404–1418

    Google Scholar 

  • Pillay VK, Nowak J (1997) Inoculum density, temperature and genotype effects on epiphytic and endophytic colonization and in vitro growth promotion of tomato (Lycopersicon esculentum L.) by a pseudomonad bacterium. Can J Microbiol 43:354–361

    CAS  Google Scholar 

  • Pinni F, Galardini M, Brzzicalupo M, Mengoni A (2011) Plant-bacteria association and symbiosis: Are there common genomic traits in Alpha proteobacteria? Genes (Basel) 2(4):1017–1032

    Google Scholar 

  • Pirhadi M, Enayatizamir N, Motamedi H, Sorkheh K (2016) Screening of salt tolerant sugarcane endophytic bacteria with potassium and zinc for their solubilizing and antifungal activity. Biosci Biotech Res Commun 9(3):530–538

    Google Scholar 

  • Pisarska K, Pietr SJ (2015) Biodiversity of dominant cultivable endophytic bacteria inhabiting tissues of six different cultivars of maize (Zea mays L ssp mays) cropped under field conditions. Pol J Microbiol 64(2):163–170

    PubMed  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    CAS  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2016) Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b–2R and its GFP derivative in corn in a long-term trial. Symbiosis 69:123–129

    CAS  Google Scholar 

  • Qadir M, Schubert S (2002) Degradation processes and nutrient constraints in sodic soils. Land Degrad Develop 13:275–294

    Google Scholar 

  • Qin S, Zhang YJ, Yuan B, Xu PY, Xing K, Wang J, Jiang JH (2014) Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil 374:753–766

    CAS  Google Scholar 

  • Rosenblueth M, Martinez Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol Res 181:337–344

    CAS  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19(8):827–837

    CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    CAS  PubMed  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MC, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    CAS  PubMed  Google Scholar 

  • Seo WT, Lim WJ, Kim EJ, Yun HD, Han Lee J, Cho KM (2010) Endophytic bacterial diversity in the young radish and their antimicrobial activity against pathogens. J Korean Soc Appl Biol Chem 53:493–503

    CAS  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Waqas M, Kang S-M, Lee I-J (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77

    CAS  Google Scholar 

  • Shan W, Zhou Y, Liu H, Yu X (2018) Endophytic actinomycetes from tea plants (Camellia sinensis): Isolation, abundance, antimicrobial, and plant-growth-promoting activities. BioMed Res Int 1:11. https://doi.org/10.1155/2018/1470305

    Article  CAS  Google Scholar 

  • Sharma A, Singh P, Kumar S, Kashyap PL, Srivastava AK, Chakdar H, Singh RN, Kaushik R, Saxena AK, Sharma AK (2015) Deciphering diversity of salt-tolerant bacilli from saline soils of eastern Indo-gangetic plains of India. Geomicrobiology J32(2):170–180

    Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    CAS  PubMed  Google Scholar 

  • Soldan R, Mapelli F, Crotti E, Schnell S, Daffonchio D, Marasco R, Fusi M, Borin S, Cardinale M (2019) Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol Res 223–225:33–43

    PubMed  Google Scholar 

  • Szymańska S, Płociniczak T, Piotrowska-Seget Z, Hrynkiewicz K (2016) Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L.-community structure and metabolic potential. Microbiol Res 192:37–51

    PubMed  Google Scholar 

  • Szymańska S, Borruso L, Brusetti L, Hulisz P, Furtado B, Hrynkiewicz K (2018) Bacterial microbiome of root-associated endophytes of Salicornia europaea in correspondence to different levels of salinity. Environ Sci Pollut Res 25(25):25420–25431

    Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75(3):748–757

    CAS  PubMed  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5(1):51–58

    CAS  Google Scholar 

  • Tedeschi A, Zong L, Huang CH, Vitale L, Volpe MG, Xue X (2017) Effect of salinity on growth parameters, soil water potential and ion composition in Cucumis melo cv. Huanghemi in north western China. J Agron Crop Sci 203(1):41–55

    CAS  Google Scholar 

  • Tejera NA, Campos R, Sanjuan J, Lluch C (2004) Nitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropici isogenic strains with varying tolerance to salt stress. J Plant Physiol 161:329–338

    CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thakuria D, Talukdar NC, Goswami C, Hazarika S, Boro RC, Khan MR (2004) Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr Sci 86(7):978–985

    Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50

    Google Scholar 

  • Ugalde RA (1999) Intracellular lifestyle of Brucella spp common genes with other animal pathogens, plant pathogens, and endosymbionts. Microb Infect 1(14):1211–1219

    CAS  Google Scholar 

  • Vaishnav A, Shukla AK, Sharma A, Kumar R, Choudhary DK (2018) Endophytic bacteria in plant salt stress tolerance: current and future prospects. J Plant Growth Regul 38(2):650–668

    Google Scholar 

  • Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    CAS  Google Scholar 

  • Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of rice. BMC Microbiol 17(1):209

    PubMed  PubMed Central  Google Scholar 

  • Wang T, Ding P, Chen P, Xing K, Bai J-L, Wan W, Jiang J-H, Qin S (2017) Complete genome sequence of endophyte Bacillus flexus KLBMP 4941 reveals its plant growth promotion mechanism and genetic basis for salt tolerance. J Biotechnol 260:38–41

    CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988

    CAS  Google Scholar 

  • Xinxian L, Xuemei C, Yagang C, Woon-Chung WJ, Zebin W, Qitang W (2011) Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World J Microbiol Biotechnol 27(5):1197–1207

    Google Scholar 

  • Xiong L, Zhu J-K (2002) Salt tolerance. Arabidopsis Book 1:e0048

    PubMed  PubMed Central  Google Scholar 

  • Xu ZH, Saffigna PG, Farquhar GD, Simpson JA, Haines RJ, Walker S, Osborne DO, Guinto D (2000) Carbon isotope discrimination and oxygen isotope composition in clones of the F (1) hybrid between slash pine and Caribbean pine in relation to tree growth, water-use efficiency and foliar nutrient concentration. Tree Physiol 20(18):1209–1217

    CAS  PubMed  Google Scholar 

  • Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685

    PubMed  Google Scholar 

  • Yaish MW (2017) Draft genome sequence of the endophytic Bacillus aryabhattai strain SQU-R12, identified from Phoenix dactylifera L. roots. Genome Announc 5:e00718–e817

    PubMed  PubMed Central  Google Scholar 

  • Yaish MW, Al-Lawati A, Jana GA, Vishwas Patankar H, Glick BR (2015) Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of Caliph Medic (Medicago truncatula). PLoS ONE 11(7):e0159007

    Google Scholar 

  • Yan X, Wang Z, Mei Y, Wang L, Wang X, Xu Q, Peng S, Zhou Y, Wei C (2018) Isolation, diversity, and growth-promoting activities of endophytic bacteria from tea cultivars of Zijuan and Yunkang-10. Front Microbiol 9:1848

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Guo Y (2018) Unraveling salt stress signaling in plants. J Integ Plant Biol 60(9):796–804

    CAS  Google Scholar 

  • Yildirim E, Taylor AG, Spittler TD (2006) Ameliorative effects of biological treatments on growth of squash plants under salt stress. Sci Hort 111:1–6

    CAS  Google Scholar 

  • Yuan Z-S, Liu F, Zhang G-F (2015) Isolation of culturable endophytic bacteria from moso bamboo (Phyllostachys edulis) and 16S rDNA diversity analysis. Arch Biol Sci 67(3):1001–1008

    Google Scholar 

  • Zahir AZ, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prem Lal Kashyap or Ajay Kumar Bhardwaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, P., Kashyap, P.L., Bhardwaj, A.K. et al. Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action. World J Microbiol Biotechnol 36, 26 (2020). https://doi.org/10.1007/s11274-020-2804-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-2804-9

Keywords

Navigation