Skip to main content
Log in

Glyoxal oxidases: their nature and properties

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

H2O2 has been found to be required for the activity of the main microbial enzymes responsible for lignin oxidative cleavage, peroxidases. Along with other small radicals, it is implicated in the early attack of plant biomass by fungi. Among the few extracellular H2O2-generating enzymes known are the glyoxal oxidases (GLOX). GLOX is a copper-containing enzyme, sharing high similarity at the level of active site structure and chemistry with galactose oxidase. Genes encoding GLOX enzymes are widely distributed among wood-degrading fungi especially white-rot degraders, plant pathogenic and symbiotic fungi. GLOX has also been identified in plants. Although widely distributed, only few examples of characterized GLOX exist. The first characterized fungal GLOX was isolated from Phanerochaete chrysosporium. The GLOX from Utilago maydis has a role in filamentous growth and pathogenicity. More recently, two other glyoxal oxidases from the fungus Pycnoporus cinnabarinus were also characterized. In plants, GLOX from Vitis pseudoreticulata was found to be implicated in grapevine defence mechanisms. Fungal GLOX were found to be activated by peroxidases in vitro suggesting a synergistic and regulatory relationship between these enzymes. The substrates oxidized by GLOX are mainly aldehydes generated during lignin and carbohydrates degradation. The reactions catalysed by this enzyme such as the oxidation of toxic molecules and the production of valuable compounds (organic acids) makes GLOX a promising target for biotechnological applications. This aspect on GLOX remains new and needs to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from Whittaker et al. 1999)

Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aichinger C, Schreier P, Leuthner B, Adamczewski M, Hillebrand S, Kuck KH, Van Kan JAL, Visser J, Stefanato F, Kahmann R (2003) Fungal glyoxal oxidases. US Patent 20030140370

  • Akinori Y, Miho AG, Kinya F, Hiroyuki U, Takayuki U, Kazuo A (2002) Production of aldehyde oxidases by microorganisms and their enzymatic properties. J Biosci Bioeng 94:124–129

    Article  Google Scholar 

  • Aylward FO, Burnum-Johnson KE, Tringe SG et al (2013) Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens. Appl Environ Microbiol 79:3770–3778

    Article  CAS  Google Scholar 

  • Barrasa JM, Gutiérrez A, Escaso V, Guillén F, Martínez MJ, Martínez AT (1998) Electron and fluorescence microscopy of extracellular glucan and aryl-alcohol oxidase during wheat-straw degradation byPleurotus eryngii. Appl Environ Microbiol 64:325–332

    CAS  Google Scholar 

  • Carro J, Ferreira P, Rodriguez L, Prieto A, Serrano A, Balcells B, Arda A, Jimenez-Barbero J, Gutierrez A, Ullrich R, Hofrichter M, Martinez AT (2015) 5-hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase. FEBS J 282:3218–3229

    Article  CAS  Google Scholar 

  • Chaplin AK, Petrus ML, Mangiameli G, Hough MA, Svistunenko DA, Nicholls P, Claessen D, Vijgenboom E, Worrall JA (2015) GlxA is a new structural member of the radical copper oxidase family and is required for glycan deposition at hyphal tips and morphogenesis of Streptomyces lividans. Biochem J 469:433–444

    Article  CAS  Google Scholar 

  • Chaplin AK, Svistunenko DA, Hough M, Wilson MT, Vijgenboom E, Worrall JA (2017) Active site maturation and activity of the copper-radical oxidase GlxA is governed by a tryptophan residue. Biochem J 474:809–825

    Article  CAS  Google Scholar 

  • Ciriminna R, Pina CD, Rossi M, Pagliaro M (2014) Understanding the glycerol market. Eur J Lipid Sci Technol 116:1432–1439

    Article  CAS  Google Scholar 

  • Couturier M, Navarro D, Olivé C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho PM, Berrin JG (2012) Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genom 13:57

    Article  CAS  Google Scholar 

  • Daniel G, Pettersson B, Nllsson T, Volc J (1990) Use of immunogold cytochemistry to detect Mn (II)-dependent and lignin peroxidases in wood degraded by the white rot fungiPhanerochaete chrysosporiumandLentinula edodes. Can J Bot 68:920–933

    Article  CAS  Google Scholar 

  • Daniel G, Volc J, Kubatova E (1994) Pyranose oxidase, a major source of H 2 O 2during wood degradation byPhanerochaete chrysosporium ,Trametes versicolor, andOudemansiella mucida. Appl Environ Microbiol 60:2524–2532

    CAS  Google Scholar 

  • Daou M, Piumi F, Cullen D, Record E, Faulds CB (2016) Heterologous production and characterization of two glyoxal oxidases fromPycnoporus cinnabarinus. Appl Environ Microbiol 82:4867–4875

    Article  CAS  Google Scholar 

  • Dijkman WP, Groothuis DE, Fraaije MW (2014) Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew Chem 53:6515–6518.

    Article  CAS  Google Scholar 

  • Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M (2011) The plant cell wall–decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765

    Article  CAS  Google Scholar 

  • Evans CS, Dutton MV, Guillén F, Veness RG (1994) Enzymes and small molecular mass agents involved with lignocellulose degradation. FEMS Microbiol Rev 13:235–239.

    Article  CAS  Google Scholar 

  • Fernandez-Fueyo E, Ruiz-Dueñas FJ, Ferreira P et al (2012) Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Nat Acad Sci USA 109:5458–5463.

    Article  CAS  Google Scholar 

  • Floudas D, Binder M, Riley R et al (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    Article  CAS  Google Scholar 

  • Forney LJ, Reddy CA, Tien M, Aust SD (1982) The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungusPhanerochaete chrysosporium. J Biol Chem 257:11455–11462

    CAS  Google Scholar 

  • Gancedo JM, Gancedo C, Asensio C (1967) Widespread occurrence of galactose oxidase and glucose oxidase in fungi. Arch Biochem Biophys 119:588–590

    Article  CAS  Google Scholar 

  • Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn (II)-dependent peroxidase from the lignin-degrading basidiomycete,Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341

    Article  CAS  Google Scholar 

  • Guan X, Zhao H, Xu Y, Wang Y (2011) Transient expression of glyoxal oxidase from the Chinese wild grape Vitis pseudoreticulata can suppress powdery mildew in a susceptible genotype. Protoplasma 248:415–423

    Article  CAS  Google Scholar 

  • Guillén F, Martínez AT, Martínez MJ (1992) Aryl-alcohol oxidase fromPleurotus eryngii : substrate specificity and H2O2—producing system. Biotechnology in Pulp and Paper Industry. UNI Publishing Co., Tokyo, pp 371–376

    Google Scholar 

  • Gutiérrez R, Urtiaga A, Ortiz I (2010) Separation of phenol and formaldehyde from industrial wastes. Modelling of the phenol extraction equilibrium. J Chem Technol Biotechnol 85:1215–1222

    Article  Google Scholar 

  • Handa S, Sharma A, Chakraborti K (1986) Natural products and plants as liver protecting drugs. Fitoterapia 57:307–351

    CAS  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers: lignin, humic substances and coal, 1st edn. Wiley, New York, pp 129–180

  • Hernández-Ortega A, Ferreira P, Martínez AT (2012) Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 93:1395–1410

    Article  Google Scholar 

  • Hidalgo A, Lopategi A, Prieto M, Serra JL, Llama MJ (2002) Formaldehyde removal in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1. Appl Microbiol Biotechnol 58:260–263

    Article  CAS  Google Scholar 

  • Hori C, Gaskell J, Igarashi K, Samejima M, Hibbett D, Henrissat B, Cullen D (2013) Genomewide analysis of polysaccharides degrading enzymes in 11 white-and brown-rot Polyporales provides insight into mechanisms of wood decay. Mycologia 105:1412–1427

    Article  CAS  Google Scholar 

  • Ito N, Phillips SE, Stevens C, Ogel ZB, Mcpherson MJ, Keen JN, Yadav KD, Knowles PF (1991) Novel thioether bond revealed by a 1.7 A crystal structure of galactose oxidase. Nature 350:87–90

    Article  CAS  Google Scholar 

  • Ito N, Phillips SEV, Yadav KDS, Knowles PF (1994) Crystal structure of a free-radical enzyme, Galactose-Oxidase. J Mol Biol 238:794–814

    Article  CAS  Google Scholar 

  • Janse BJH, Gaskell J, Akhtar M, Cullen D (1998) Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Appl Environ Microbiol 64:3536–3538

    CAS  Google Scholar 

  • Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112.

    Article  Google Scholar 

  • Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16.

    Article  Google Scholar 

  • Kelley RL, Reddy CA (1986) Identification of glucose oxidase activity as the primary source of hydrogen peroxide production in ligninolytic cultures of Phanerochaete chrysosporium. Arch Microbiol 144:248–253

    Article  CAS  Google Scholar 

  • Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proc Nat Acad Sci USA 87:2936–2940

    Article  CAS  Google Scholar 

  • Kersten PJ, Cullen D (1993) Cloning and characterization of cDNA encoding glyoxal oxidase, a H2O2-producing enzyme from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Proc Nat Acad Sci USA 90:7411–7413

    Article  CAS  Google Scholar 

  • Kersten P, Cullen D (2014) Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes. Fungal Genet Biol 72:124–130.

    Article  CAS  Google Scholar 

  • Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H 2 O 2production byPhanerochaete chrysosporium. J Bacteriol 169:2195–2201

    Article  CAS  Google Scholar 

  • Kirk TK, Chang HM (1975) Decomposition of lignin by white-rot fungi. II. Characterization of heavily degraded lignins from decayed spruce. Holzforschung 29:56–64

    Article  CAS  Google Scholar 

  • Krystof M, Perez-Sanchez M, Dominguez De Maria P (2013) Lipase-mediated selective oxidation of furfural and 5 hydroxymethylfurfural. ChemSusChem 6:826–830

    Article  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Ann Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  Google Scholar 

  • Leuthner B, Aichinger C, Oehmen E, Koopmann E, Müller O, Müller P, Kahmann R, Bölker M, Schreier PH (2005) A H2O2—producing glyoxal oxidase is required for filamentous growth and pathogenicity inUstilago maydis.Mol Gen Genom 272:639–650

    Article  CAS  Google Scholar 

  • Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:1–14

    Article  Google Scholar 

  • Levasseur A, Lomascolo A, Chabrol O, Ruiz-Dueñas FJ, Boukhris-Uzan E, Piumi F, Kües U, Ram AF, Murat C, Haon M, Benoit I (2014) The genome of the white-rot fungusPycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown. BMC Genom 15:1

    Article  Google Scholar 

  • Lobos S, Larraín J, Salas L, Cullen D, Vicuña R (1994) Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomyceteCeriporiopsis subvermispora. Microbiology 140:2691–2698

    Article  CAS  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  CAS  Google Scholar 

  • Martinez D, Challacombe J, Morgenstern I et al (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Nat Acad Sci USA 106:1954–1959

    Article  CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Biores Technol 93:1–10

    Article  CAS  Google Scholar 

  • Ohm RA, De Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, De Vries RP, Record E, Levasseur A, Baker SE (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28:957–U10

    Article  CAS  Google Scholar 

  • Olson Å, Aerts A, Asiegbu F et al (2012) Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytol 194:1001–1013

    Article  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Biores Technol 74:25–33.

    Article  CAS  Google Scholar 

  • Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31:20–31

    Article  CAS  Google Scholar 

  • Parish RW, Li SF (2010) Death of a tapetum: a programme of developmental altruism. Plant Sci 178:73–89

    Article  CAS  Google Scholar 

  • Paszczyński A, Huynh VB, Crawford R (1985) Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Letts 29:37–41.

    Article  Google Scholar 

  • Phan HA, Iacuone S, Li SF, Parish RW (2011) The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell 23:2209–2224

    Article  CAS  Google Scholar 

  • Qin YZ, Li YM, Zong MH, Wu H, Li N (2015) Enzyme-catalyzed selective oxidation of 5-hydroxymethylfurfural (HMF) and separation of HMF and 2,5-diformylfuran using deep eutectic solvents. Green Chem 17:3718–3722

    Article  CAS  Google Scholar 

  • Rahman MA, Humphreys RWR, Wu SR (1995) Method of conditioning fabrics with glyceric acid based biodegradable molecules. Canadian Patent 2151319.

  • Rea G, Metoui O, Infantino A, Federico R, Angelini R (2002) Copper amine oxidase expression in defense responses to wounding and Ascochyta rabiei invasion. Plant Physiol 128:865–875

    Article  CAS  Google Scholar 

  • Reape TJ, Mccabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15:249–256

    Article  CAS  Google Scholar 

  • Roncal T, Muñoz C, Lorenzo L, Maestro B, Díaz De Guereñu MEM (2012) Two-step oxidation of glycerol to glyceric acid catalyzed by the Phanerochaete chrysosporium glyoxal oxidase. Enzyme Microb Technol 50:143–150

    Article  CAS  Google Scholar 

  • Ruiz - Dueñas FJ, Martínez MJ, Martínez AT (1999) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungusPleurotus eryngii. Mol Microbiol 31:223–235

    Article  Google Scholar 

  • Sasaki Y, Isobe K, Kataoka M, Ogawa J, Iwasaki A, Hasegawa J, Shimizu S (2008) Purification and characterization of a new aldehyde oxidase fromPseudomonas sp. AIU 362. J Biosci Bioeng 106:297–302

    Article  CAS  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108

    Article  CAS  Google Scholar 

  • Shi J, Sharma-Shivappa RR, Chinn MS (2009) Microbial pretreatment of cotton stalks by submerged cultivation ofPhanerochaete chrysosporium. Bioresour Technol 100:4388–4395

    Article  CAS  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82

    Article  CAS  Google Scholar 

  • Son YL, Kim HY, Thiyagarajan S, Xu JJ, Park SM (2012) Heterologous expression of Phanerochaete chrysoporium glyoxal oxidase and its application for the coupled reaction with manganese peroxidase to decolorize malachite green. Mycobiology 40:258–262.

    Article  CAS  Google Scholar 

  • Song XS, Xing S, Li HP, Zhang JB, Qu B, Jiang JH, Fan C, Yang P, Liu JL, Hu ZQ, Xue S, Liao YC (2016) An antibody that confers plant disease resistance targets a membrane-bound glyoxal oxidase in Fusarium. New Phytol 210:997–1010

    Article  CAS  Google Scholar 

  • Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter GJM, Coelho JFJ, Silvestre AJD (2015) Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem 6:5961–5983.

    Article  CAS  Google Scholar 

  • Suzuki H, Macdonald J, Syed K et al (2012) Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genom 13:444

    Article  CAS  Google Scholar 

  • Takano M, Nakamura M, Yamaguchi M (2010) Glyoxal oxidase supplies hydrogen peroxide at hyphal tips and on hyphal wall to manganese peroxidase of white-rot fungus Phanerochaete crassa WD1694. J Wood Sci 56:307–313

    Article  CAS  Google Scholar 

  • Tang JD, Perkins AD, Sonstegard TS, Schroeder SG, Burgess SC, Diehl SV (2012) Short-Read Sequencing for Genomic Analysis of the Brown Rot Fungus Fibroporia radiculosa. Appl Environ Microbiol 78:2272–2281

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycetePhanerochaete chrysosporiumBurds. Science 221:661–662

    Article  CAS  Google Scholar 

  • Uchida H, Okamura Y, Yamanaka H, Fukuda T, Haneda S, Aisaka K, Fujii Y (2006) Purification and some properties of an aldehyde oxidase fromStreptomyces rimosusATCC10970. World J Microbiol Biotechnol 22:469–474

    Article  CAS  Google Scholar 

  • Vanden Wymelenberg A, Sabat G, Mozuch M, Kersten PJ, Cullen D, Blanchette RA (2006) Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 72:4871–4877

    Article  CAS  Google Scholar 

  • Varela E, Martínez AT, Martínez MJ (1999) Molecular cloning of aryl-alcohol oxidase from the fungusPleurotus eryngii, an enzyme involved in lignin degradation. Biochem J 341:113–117

    Article  CAS  Google Scholar 

  • Wada R, Hyon SH, Ikada Y (1996) New biodegradable oligoesters for pharmaceutical application. J Biomat Sci 7:715–725

    Article  CAS  Google Scholar 

  • Wan C, Li Y (2010) Microbial pretreatment of corn stover withCeriporiopsis subvermisporafor enzymatic hydrolysis and ethanol production. BioresTechnol 101:6398–6403.

    CAS  Google Scholar 

  • Wang P, Woodward CA, Kaufman EN (1999) Poly(ethylene glycol)-modified ligninase enhances pentachlorophenol biodegradation in water-solvent mixtures. Biotechnol Bioeng 64:290–297

    Article  CAS  Google Scholar 

  • Wariishi H, Akileswaran L, Gold MH (1988) Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochem 27:5365–5370.

    Article  CAS  Google Scholar 

  • Whittaker JW (1994) The free radical-coupled copper active site of galactose oxidase. In: Sigel H, Sigel A (eds) Metal Ions in biological systems: Volume 30: Metalloenzymes involving amino acid-residue and related radicals. CRC Press, New York, pp 315–360

    Google Scholar 

  • Whittaker JW (2005) The radical chemistry of galactose oxidase. Arch Biochem Biophys 433:227–239

    Article  CAS  Google Scholar 

  • Whittaker MM, Whittaker JW (1993) Ligand interactions with galactose oxidase: mechanistic insights. Biophys J 64:762–772

    Article  CAS  Google Scholar 

  • Whittaker MM, Chuang YY, Whittaker JW (1993) Models for the redox-active site in galactose-oxidase. J Am Chem Soc 115:10029–10035

    Article  CAS  Google Scholar 

  • Whittaker MM, Kersten PJ, Nakamura N, Sanders-Loehr J, Schweizer ES, Whittaker JW (1996) Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J Biol Chem 271:681–687

    Article  CAS  Google Scholar 

  • Whittaker MM, Kersten PJ, Cullen D, Whittaker JW (1999) Identification of catalytic residues in glyoxal oxidase by targeted mutagenesis. J Biol Chem 274:36226–36232

    Article  CAS  Google Scholar 

  • Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE, Viikari L (2005) Hydrolysis of cellulose and hemicellulose. Polysaccharides 1:1023–1062.

    Google Scholar 

  • Yin D, URRESTI S, Lafond M, Johnston EM, Derikvand F, Ciano L, Berrin J-G, Henrissat B, Walton PH, Davies GJ, Brumer H (2015) Structure function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat Commun 6:10197

    Article  Google Scholar 

  • Zhou BJ, Wang XP, Wang YJ (2007) cDNA cloning, expression, protein purification, and characterization of a novel glyoxal oxidase related gene from Vitis pseudoreticulata. Biol Plant 51:458–466

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the European Commission for funding this work within the INDOX Project (KBBE-2013-7-613549).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig B. Faulds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daou, M., Faulds, C.B. Glyoxal oxidases: their nature and properties. World J Microbiol Biotechnol 33, 87 (2017). https://doi.org/10.1007/s11274-017-2254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2254-1

Keywords

Navigation