Skip to main content
Log in

Wetlands distribution in the agricultural-livestock core of the South American temperate pampas landscape. Approach from soil cartography

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Expansion and intensification of agriculture are among the main factors of degradation and systematic loss of wetlands throughout the twentieth century. We analyze the potential occurrence of wetlands in the core area of the temperate Pampas region of South America, recognized for the quality of its pastures and the suitability of its soils for grain production. We mapped the spatial distribution of wetlands in the Province of Buenos Aires based on the analysis and classification of the local soil database at a scale of 1:50,000. Thus, 399 soil series were classified as hydric/non-hydric according to the scope of methods and criteria reviewed. Then we used this information to classify 2211 map units into five categories based on the percentage of hydric and non-hydric soil series: 1—hydric (100% hydric series); 2—predominantly hydric (66–99% hydric series); 3—partially hydric (33–65% hydric series); 4—predominantly non-hydric (1–32% hydric series); and 5—non-hydric (0% hydric series). We estimated wetlands cover about 35% of the province. Wetlands distribution is not uniform, we identified three main landscapes: terrestrial matrix with wetlands, mosaic of wetlands and non-wetlands, and mosaic dominated by wetland patches. Our results provide tools for land management in terms of strategies for a wise use of wetlands and their conservation. Our map shows high values of consistency with the occurrence of wetlands visually identified in high-resolution imagery (Google Earth platform). In such a highly agriculturized landscape, our results indicate a much larger wetland area compared to estimates made with optical remote sensing data classifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available in the INTA repositories: http://visor.geointa.inta.gob.ar/; https://anterior.inta.gov.ar/suelos/cartas/inde-.htm; http://sisinta.inta.gob.ar/es/series?filas=50.

References

  • Adeli S, Salehi B, Mahdianpari M, Quackenbush LJ, Brisco B, Tamiminia H, Shaw S (2020) Wetland monitoring using SAR data: a meta-analysis and comprehensive review. Remote Sens 12(14):2190. https://doi.org/10.3390/rs12142190

    Article  Google Scholar 

  • Ameghino F (1884) Las secas y las inundaciones en la Provincia de Buenos Aires. Obras de retención y no de desagüe, Ministerio de Asuntos Agrarios, Provincia de Buenos Aires

  • Asselen SV, Verburg PH, Vermaat JE, Janse JH (2013) Drivers of wetland conversion: a global meta-analysis. PLoS ONE 8(11):e81292. https://doi.org/10.1371/journal.pone.0081292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banzato G (2013) Discursos y proyectos para afrontar las inundaciones en la Provincia de Buenos Aires, 1890–1910. Dissertation, XIV Jornadas Interescuelas-Departamentos de Historia 2 al 5 de octubre de 2013 Mendoza. Univertidad Nacional de Cuyo. Facultad de Filosofía y Letras. Departamento de Historia. https://www.memoria.fahce.unlp.edu.ar/trab_eventos/ev.2720/ev.2720.pdf

  • Banzato G (2021) Tendencias seculares e innovaciones en la gestión de las obras hidráulicas en la cuenca del río Salado (provincial de Buenos Aires, Argentina, 1875–1915/1983–2018). Agua y Territorio 17:93–109

    Article  Google Scholar 

  • Batista WB, León RJC, Perelman SB (1988) Las comunidades vegetales de un pastizal natural de la Región de Laprida, Prov. de Buenos Aires, Argentina. Phytocoenologia 16:465–480

    Article  Google Scholar 

  • Batista WB, Taboada MA, Lavado RS, Perelman SB, León RJC (2005) Asociación entre comunidades vegetales y suelos de pastizal de la Pampa Deprimida. In: Oesterheld M, Aguiar M, Ghersa C, Paruelo J (eds) La heterogeneidad de la vegetación de los agroecosistemas. Un homenaje a Rolando JC León. Editorial Facultad de Agronomía UBA, Buenos Aires, pp 113–129

    Google Scholar 

  • Bayley SE, Wong AS, Thompson JE (2013) Effects of agricultural encroachment and drought on wetlands and shallow lakes in the boreal transition zone of Canada. Wetlands 33(1):17–28. https://doi.org/10.1007/s13157-012-0349-x

    Article  Google Scholar 

  • Bell JC, Richardson JL (1997) Aquic conditions and hydric soil indicators for Aquolls and Albolls. In: Aquic conditions and hydric soils: the problem soils, vol 50. Wiley, New York, pp 23–40. https://doi.org/10.2136/sssaspecpub50.c2

  • Benzaquen L, Blanco DE, Bo R, Kandus P, Lingua G, Minotti P, Quintana R (2017) Regiones de Humedales de la Argentina. Ministerio de Ambiente y Desarrollo Sustentable. Fundación Humedales/Wetlands International, Universidad Nacional de San Martín y Universidad de Buenos Aires, San Martín

  • Berkowitz JF (2011) Recent advances in wetland delineation-implications and impact of regionalization. Wetlands 31(3):593–601. https://doi.org/10.1007/s13157-011-0167-6

    Article  Google Scholar 

  • Burkart SE, León RJC, Movia C (1990) Inventario fitosociológico del pastizal de la depresión del Salado (prov. Buenos Aires) en un área representativa de sus principales ambientes. Darwiniana 30:27–69

    Google Scholar 

  • Burkart SE, León RJC, Perelman SB, Agnusdei M (1998) The grasslands of the Flooding Pampa (Argentina): floristic heterogeneity of natural communities of the southern Río Salado Basin. Coenoses 13:17–27

    Google Scholar 

  • Cabrera ÁL (1968) Flora de la Provincia de Buenos Aires. Colección científica del INTA, Buenos Aires, vol 1: Pterifófitas, gimnospermas y monocotiledóneas. Colección Científica INTA, Buenos Aires

  • Castro Berman MC, Marino DJG, Quiroga MV, Zagarese H (2018) Occurrence and levels of glyphosate and AMPA in shallow lakes from the Pampean and Patagonian regions of Argentina. Chemosphere 200:513–522. https://doi.org/10.1016/j.chemosphere.2018.02.103

    Article  CAS  PubMed  Google Scholar 

  • Castro Berman MC, O’Farrell I, Huber P, Marino D, Zagarese H (2022) A large-scale geographical coverage survey reveals a pervasive impact of agricultural practices on plankton primary producers. Agric Ecosyst Environ 325:107740. https://doi.org/10.1016/j.agee.2021.107740

    Article  Google Scholar 

  • Convention on Wetlands (2010) National wetland policies: developing and implementing national wetland policies. In: Ramsar handbooks for the wise use of wetlands, 4th edn, vol 2. Ramsar Convention Secretariat, Gland

  • Convention on Wetlands (2021) Global wetland outlook: special edition 2021. Ramsar Convention Secretariat, Gland

    Google Scholar 

  • Cowardin LM, Carter V, Golet FC, Laroe ET (1979) Classification of wetlands and deepwater habitats of the United States. Fish and Wildlife Service, Washington, DC

    Book  Google Scholar 

  • Dahl TE (2014) Status and trends of prairie wetlands in the United States 1997 to 2009. U.S. Department of the Interior; Fish and Wildlife Service, Ecological Services, Washington, DC

    Google Scholar 

  • Davidson NC (2014) How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res 65(10):934–941. https://doi.org/10.1071/MF14173

    Article  Google Scholar 

  • Davidson NC, Fluet-Chouinard E, Finlayson CM (2018) Global extent and distribution of wetlands: trends and issues. Mar Freshw Res 69:620–627. https://doi.org/10.1071/MF17019

    Article  Google Scholar 

  • De Haro JC (2012) Ecorregión Mar Argentino. In: Morello J, Matteucci S, Rodriguez AF, Silva ME (eds) Ecorregiones y complejos ecosistémicos argentinos. Orientación Gráfica Editora, Buenos Aires, pp 655–714

    Google Scholar 

  • De Oliveira AMF, Zarrilli AG (2022) The expansion of the railway and environmental changes: the modern configuration of the Argentine Pampas, c. 1870–1930. Glob Environ 15(2):273–297

    Article  Google Scholar 

  • Diovisalvi N, Bohn VY, Piccolo MC, Perillo GM, Baigún C, Zagarese HE (2015) Shallow lakes from the Central Plains of Argentina: an overview and worldwide comparative analysis of their basic limnological features. Hydrobiologia 752:5–20. https://doi.org/10.1007/s10750-014-1946-x

    Article  CAS  Google Scholar 

  • Dixon MJR, Loh J, Davidson NC, Beltrame C, Freeman R, Walpole M (2016) Tracking global change in ecosystem area: the Wetland Extent Trends index. Biol Conserv 193:27–35. https://doi.org/10.1016/j.biocon.2015.10.023

    Article  Google Scholar 

  • Downing AS, Yong GY, Dyer M, Aguiar AP, Selomane O, Aceituno AJ (2021) When the whole is less than the sum of all parts—tracking global-level impacts of national sustainability initiatives. Glob Environ Change 69:102306. https://doi.org/10.1016/j.gloenvcha.2021.102306

    Article  Google Scholar 

  • Environmental Laboratory (1987) Corps of engineers wetlands delineation manual. Wetlands Research Program Technical Report Y-87, Washington DC

  • Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecol Manage 17(1):71–84. https://doi.org/10.1007/s11273-008-9119-1

    Article  Google Scholar 

  • FABLE (2020) Pathways to sustainable land-use and food systems. In: 2020 Report of the FABLE Consortium. International Institute for Applied Systems Analysis (IIASA)/Sustainable Development Solutions Network (SDSN), Laxenburg/Paris. https://doi.org/10.22022/ESM/12-2020.16896

  • Fabricante I, Minotti P, Kandus P (2022) Mapping the spatial distribution of wetlands in Argentina (South America) from a fusion of national databases. Mar Freshw Res. https://doi.org/10.1071/MF22111

    Article  Google Scholar 

  • FAO (2022) The importance of Ukraine and the Russian Federation for global agricultural markets and the risks associated with the current conflict. FAO, Rome. https://www.fao.org/3/cb9236en/cb9236en.pdf

  • Farda NM (2017) Multi-temporal land use mapping of coastal wetlands area using machine learning in Google Earth Engine. IOP Conf Ser Earth Environ Sci 98:012042. https://doi.org/10.1088/1755-1315/98/1/012042

    Article  Google Scholar 

  • Federal Interagency Committee for Wetland Delineation (1989) Federal manual for identifying and delineating jurisdictional wetlands. Cooperative technical publication. U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, and USDA Soil Conservation Service, Washington, DC

  • Fluet-Chouinard E, Stocker BD, Zhang Z et al (2023) Extensive global wetland loss over the past three centuries. Nature 614(7947):281–286. https://doi.org/10.1038/s41586-022-05572-6

    Article  CAS  PubMed  Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Gallant AL (2015) The challenges of remote monitoring of wetlands. Remote Sens 7(8):10938–10950. https://doi.org/10.3390/rs70810938

    Article  Google Scholar 

  • GeoINTA (2016) Suelos de la República Argentina. Instituto Nacional de Tecnología Agropecuaria. http://visor.geointa.inta.gob.ar/. Accessed Dec 2022

  • Geraldi AM, Piccolo MC, Perillo GME (2011) El rol de las lagunas bonaerenses en el paisaje pampeano. Ciencia Hoy 21(123):9–14

    Google Scholar 

  • Gonzalez N (2005) Los ambientes hidrogeologicos de la Provincia de Buenos Aires. Relatorio del XVI Congreso Geol. Argent., La Plata, pp 359–374

  • Guo M, Li J, Sheng C, Xu J, Wu L (2017) A review of wetland remote sensing. Sensors 17(4):777. https://doi.org/10.3390/s17040777

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrera LP, Laterra P, Maceira NO, Zelaya KD, Martínez GA (2009) Fragmentation status of tall-tussock grassland relicts in the Flooding Pampa, Argentina. Rangeland Ecol Manag 62(1):73–82. https://doi.org/10.2111/08-015

    Article  Google Scholar 

  • Houspanossian J, Giménez R, Whitworth-Hulse JI, Nosetto MD, Tych W, Atkinson PM et al (2023) Agricultural expansion raises groundwater and increases flooding in the South American plains. Science 380(6652):1344–1348. https://doi.org/10.1126/science.add5462

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Niu Z, Chen Y, Li L, Zhang H (2017) Global wetlands: Potential distribution, wetland loss, and status. Sci Total Environ 586:319–327. https://doi.org/10.1016/j.scitotenv.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  • IGN (2023a) Capas SIG. https://www.ign.gob.ar/NuestrasActividades/InformacionGeoespacial/CapasSIG. Accessed 16 Jan 2023

  • IGN (2023b) División política, superficie y población. https://www.ign.gob.ar/NuestrasActividades/Geografia/DatosArgentina/DivisionPolitica. Accessed 14 July 2023

  • Imbellone PA, Giménez JE, Panigatti JL (2010) Suelos de la región pampeana. Procesos de formación. Ediciones INTA, Buenos Aires

    Google Scholar 

  • INTA (1996) Colección Cartas de Suelos de la República Argentina. E 1:50.000. CIRN-Castelar, Buenos Aires

  • INTA (2022a) Cartas de suelos de la República Argentina. INTA, Provincia de Buenos Aires. https://anterior.inta.gov.ar/suelos/cartas/inde-.htm. Accessed Dec 2022

  • INTA (2022b) Sistemas de información de Suelos del INTA. http://sisinta.inta.gob.ar/es/series?filas=50. Accessed Dec 2022

  • Iriondo MH (1995) La Pampa. In: Argollo J, Mourguiart P (eds) Climas Cuaternarios en América del Sur. Quaternary Climates of South America. ORSTOM, La Paz, pp 283–306

    Google Scholar 

  • Junk WJ, An S, Finlayson CM, Gopal B et al (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci 75:151–167. https://doi.org/10.1007/s00027-012-0278-z

    Article  CAS  Google Scholar 

  • Kandus P, Minotti P, Malvárez AI (2008) Distribution of wetlands in Argentina estimated from soil charts. Acta Sci Biol Sci 30(4):403–409

    Article  Google Scholar 

  • Kandus P, Minotti PG, Morandeira NS et al (2018) Remote sensing of wetlands in South America: status and challenges. Int J Remote Sens 39(4):993–1016. https://doi.org/10.1080/01431161.2017.1395971

    Article  Google Scholar 

  • Keddy PA (2010) Wetland ecology: principles and conservation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Klein HS, Luna FV (2021) The growth of the soybean frontier in South America: the case of Brazil and Argentina. Rev Hist Econ J Iberian Lat Am Econ Hist 39(3):427–468. https://doi.org/10.1017/S0212610920000269

    Article  Google Scholar 

  • León RJC, Burkat SE, Movia CP (1979) Relevamiento fitosociológico del pastizal del norte de la Depresión del Salado (Partidos de Magdalena y Brandsen, Pcia. de Bs. As.). In: Vegetación de la República Argentina, Serie Fitogeográfica 17. Ediciones INTA, Buenos Aires, pp 1–90

  • Manuel-Navarrete D, Gallopín GC, Blanco M et al (2009) Multi-causal and integrated assessment of sustainability: the case of agriculturization in the Argentine Pampas. Environ Dev Sustain 11:621–638. https://doi.org/10.1007/s10668-007-9133-0

    Article  Google Scholar 

  • Matteucci SD (2012a) Ecorregión Pampa. In: Morello J, Matteucci S, Rodríguez A, Silva M (eds) Ecorregiones y complejos ecosistémicos argentinos. Orientación Gráfica Editora, Buenos Aires, pp 391–445

    Google Scholar 

  • Matteucci SD (2012b) Ecorregión Espinal. In: Morello J, Matteucci S, Rodríguez A, Silva M (eds) Ecorregiones y complejos ecosistémicos argentinos. Orientación Gráfica Editora, Buenos Aires, pp 349–390

    Google Scholar 

  • Mausbach MJ, Parker WB (2001) Background and history of the concept of hydric soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils: genesis, hydrology, landscapes and classification. Lewis Publishers, Boca Raton, pp 19–33

    Google Scholar 

  • Millenium Ecosystem Assessment (2005) Los Ecosistemas y el bienestar humano: humedales y agua. Informe de Síntesis. World Resources Institute, Washington, DC

  • Ministerio de Hacienda y Finanzas de la Provincia de Buenos Aires (2023a) Estadísticas Ganaderas. http://www.estadistica.ec.gba.gov.ar/dpe/index.php?option=com_content&view=category&layout=blog&id=21&Itemid=142. Accessed July 2023

  • Ministerio de Hacienda y Finanzas de la Provincia de Buenos Aires (2023b) Estadísticas Agrícolas. http://www.estadistica.ec.gba.gov.ar/dpe/index.php?option=com_content&view=category&layout=blog&id=20&Itemid=141. Accessed July 2023

  • Minotti P, Ramonell C, Kandus P (2013) Sistemas de humedales del Corredor Fluvial Paraná Paraguay. In: Benzaquén L, Blanco DE, Bó RF, Kandus P, Lingua GF, Minotti P, Quintana RD, Sverlij S, Vidal L (eds) Inventario de los humedales de Argentina. Sistemas de paisajes de humedales del Corredor Fluvial Paraná-Paraguay. Secretaría de Ambiente y Desarrollo Sustentable de la Nación, Buenos Aires

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2015) Wetlands, 5th edn. Wiley, New York

    Google Scholar 

  • Morello J, Matteucci S, Rodríguez A, Silva M (2012) Ecorregiones y Complejos Ecosistémicos Argentinos. FADU, GEPAMA Universidad de Buenos Aires, Buenos Aires, DC

    Google Scholar 

  • Navarro MF, Navarro CS, Barrios R et al (2022) Mapa de distribución potencial de humedales en Argentina. Technical Report. Ediciones INTA. https://repositorio.inta.gob.ar/handle/20.500.12123/13239

  • Nosetto MD, Paez RA, Ballesteros SI, Jobbágy EG (2015) Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agric Ecosyst Environ 206:60–70. https://doi.org/10.1016/j.agee.2015.03.009

    Article  Google Scholar 

  • NRCS-USDA (2023) Hydric soils rating by map unit. https://www.nrcs.usda.gov/publications/Hydric%20Soils%20Rating%20by%20Map%20Unit%205%20class.html. Accessed July 2023

  • NTCHS, National Technical Committee for Hydric Soils (2012) Hydric soil list criteria. United States Department of Agriculture, Natural Resources Conservation Service, Washington, DC

  • Paruelo JM, Salas O (1990) Caracterización de las inundaciones en la depresión del Salado (Buenos Aires, Argentina): Caracterización de la capa freática. Turrialba 40:5–11

    Google Scholar 

  • Paruelo JM, Guerschman JP, Pineiro G et al (2006) Cambios en el uso de la tierra en Argentina y Uruguay: marcos conceptuales para su análisis. Agrocienc Uruguay 10(2):47–61

    Article  Google Scholar 

  • Perelman SB, León RJC, Oesterheld M (2001) Cross-scale vegetation patterns of Flooding Pampa grasslands. J Ecol 89:562–577

    Article  Google Scholar 

  • Perelman SB, Burkart SE, León RJC (2003) The role of a native tussock grass (Paspalum quadrifarium Lam.) in structuring plant communities in the flooding Pampa grasslands, Argentina. Biodivers Conserv 12:225–238. https://doi.org/10.1023/A:1021948723714

    Article  Google Scholar 

  • Pereyra FX (2012) Suelos de la Argentina. SEGEMAR-AACS-GAEA, Buenos Aires

    Google Scholar 

  • Pereyra FX (2018) Geomorfología de la Provincia de Buenos Aires. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Serie Contribuciones Técnicas – Ordenamiento territorial No. 9, Buenos Aires

  • Piquer-Rodríguez M, Butsic V, Gärtner P et al (2018) Drivers of agricultural land-use change in the Argentine Pampas and Chaco regions. Appl Geogr 91:111–122. https://doi.org/10.1016/j.apgeog.2018.01.004

    Article  Google Scholar 

  • Quirós R, Rennella A, Boveri M, Rosso JJ, Sosnovsky A (2002) Factores que afectan las estructura y el funcionamiento de las lagunas pampeanas. Ecol Austral 12:175–185

    Google Scholar 

  • Quirós R, Boveri MB, Petrachi CA et al (2006) Los efectos de la agriculturización del humedal pampeano sobre la eutrofización de sus lagunas. In: Tundizi JG, Matsumura-Tundisi T, Sidagis Galli C (eds) Eutrofizaçao na América do Sul: Causas, consecuencias e tecnologías de gestão. Rede EUTROSUL. PROSUL, São Carlos, pp 1–16

  • Rositano F, Pessah S, Durand P, Laterra P (2021) Coupled socio-ecological changes in response to soybean e-pansion along the 2001–2010 decade in Argentina. Anthropocene 39:100343. https://doi.org/10.1016/j.ancene.2022.100343

    Article  Google Scholar 

  • Rubio G, Pereyra F, Taboada MA (2019) Soils of the Pampean region. In: Rubio G, Lavado RS, Pereyra FX (eds) The soils of Argentina. Springer, Cham, pp 81–100

    Chapter  Google Scholar 

  • Sahour H, Kemink KM, O’Connell J (2021) Integrating SAR and optical remote sensing for conservation-targeted wetlands mapping. Remote Sens 14(1):159. https://doi.org/10.3390/rs14010159

    Article  Google Scholar 

  • Sierra EM, Pérez SP (2006) Tendencias del régimen de precipitación y el manejo sustentable de los agroecosistemas: estudio de un caso en el noroeste de la provincia de Buenos Aires, Argentina. Rev Climatol 6:1–12

    Google Scholar 

  • Soil Conservation Service (1994) Changes in hydric soils of the United States. Fed Reg 59(133):35680–35681

    Google Scholar 

  • Soil Conservation Service Staff (1961) Land-capability classification. In: Agriculture Handbook No. 210. USDA Soil Conservation Service, Washington, DC

  • Soil Science Division Staff (2017) Soil survey manual. In: Ditzler C, Scheffe K, Monger HC (eds) USDA handbook 18. Government Printing Office, Washington, pp 235–292

    Google Scholar 

  • Soil Survey Division Staff (1993) Soil survey manual. In: USDA–SCS agriculture handbook 18. U.S. Government Printing Office, Washington DC

  • Thompson JA, Bell JC (2016) Hydric soil indicators in Mollisol landscapes. In: Vepraskas MJ, Craft CB (eds) wetland soils: genesis, hydrology, landscapes, and classification. CRC Press, Boca Raton, pp 311–323

    Google Scholar 

  • Tiner RW (2015) Introduction to wetland mapping and its challenges. In: Tiner RW, Lang MW, Klemas VV (eds) Remote sensing of wetlands. CRC Press, Boca Raton, pp 43–66

    Chapter  Google Scholar 

  • Tiner RW (2017) Wetland indicators: a guide to wetland identification, delineation, classification and mapping, 2nd edn. Taylor & Francis, Boca Raton

    Google Scholar 

  • Tonello MS, Prieto AR (2008) Modern vegetation–pollen–climate relationships for the Pampa grasslands of Argentina. J Biogeogr 35(5):926–938. https://doi.org/10.1111/j.1365-2699.2007.01854.x

    Article  Google Scholar 

  • Tottrup C, Druc D, Tong X, Barvels E, Christensen M, Grogan K et al (2020) The global wetland extent: towards a high-resolution global-level inventory of the spatial e-tent of vegetated wetlands. UN Environment, Nairobi. https://files.habitatseven.com/unwater/Measuring-the-spatial-e-tent-of-wetlands-globally_Detailed_technical_specifications.pdf

  • Tricart JLF (1973) Geomorfología de la Pampa Deprimida: base para los estudios edafológicos y agronómicos (No. 551.45 631.478212). Secretaría de Estado de Agricultura y Ganadería de la Nación, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires

  • UNEP (2020) Measuring change in the extent of water-related ecosystems over time: sustainable development goal monitoring methodology indicator 6.6.1. https://files.habitatseven.com/unwater/SDG-Monitoring-Methodology-for-Indicator-6.6.1.pdf

  • USACE-USACE (2010) Wetlands Regulatory Assistance Program. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Great Plains Region (Version 2.0). U.S. Army Engineer Research and Development Center, Vicksburg

  • Vasilas LM, Berkowitz JF (2016) Identifying hydric soils in the landscape. In: Vepraskas MJ, Craft CB (eds) Wetland soils: genesis, hydrology, landscapes, and classification. CRC Press, Boca Raton, pp 219–244

    Google Scholar 

  • Vepraskas MJ (2016) History of the concept of hydric soil. In: Vepraskas MJ, Craft CB (eds) Wetland soils: genesis, hydrology, landscapes, and classification. CRC Press, Boca Raton, pp 23–38

    Chapter  Google Scholar 

  • Vepraskas MJ, Craft CB (2016) Wetland soils: genesis, hydrology, landscapes, and classification. CRC Press, Boca Raton

    Book  Google Scholar 

  • Vepraskas MJ, Sprecher SW, Vepraskas MJ, Sprecher SW (1997) Overview of aquic conditions and hydric soils. SSSA Special Publication. SSSA, Madison. https://doi.org/10.2136/sssaspecpub50.c1

    Book  Google Scholar 

  • Vera C, Silvestri G, Liebmann B, González P (2006) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett. https://doi.org/10.1029/2006GL025759

    Article  Google Scholar 

  • Vervoorst F (1967) Las comunidades vegetales de la Depresión del Salado. In: La vegetación de la República Argentina, vol 7. Ediciones INTA, Buenos Aires, pp 1–262

  • Were D, Kansiime F, Fetahi T et al (2019) Carbon sequestration by wetlands: a critical review of enhancement measures for climate change mitigation. Earth Syst Environ 3(2):327–340. https://doi.org/10.1007/s41748-019-00094-0

    Article  Google Scholar 

  • White L, Brisco B, Dabboor M, Schmitt A, Pratt A (2015) A collection of SAR methodologies for monitoring wetlands. Remote Sens 7(6):7615–7645. https://doi.org/10.3390/rs70607615

    Article  Google Scholar 

  • Whitworth-Hulse JI, Jobbágy EG, Borrás L, Alsina SE, Houspanossian J, Nosetto MD (2023) The expansion of rainfed grain production can generate spontaneous hydrological changes that reduce climate sensitivity. Agric Ecosyst Environ 349:108440. https://doi.org/10.1016/j.agee.2023.108440

    Article  Google Scholar 

  • WWF (2014) El Crecimiento de la Soja: Impactos y Soluciones. WWF International, Gland

    Google Scholar 

  • Xi Y, Peng S, Ciais P, Chen Y (2021) Future impacts of climate change on inland Ramsar wetlands. Nat Clim Chang 11(1):45–51. https://doi.org/10.1038/s41558-020-00942-2

    Article  Google Scholar 

  • Zárate M, Folguera A (2009) On the formations of the Pampas in the footsteps of Darwin: South of the Salado. Rev Asoc Geol Argentina 64(1):124–136

    Google Scholar 

  • Zárate MA, Tripaldi A (2012) The aeolian system of central Argentina. Aeolian Res 3(4):401–417. https://doi.org/10.1016/j.aeolia.2011.08.002

    Article  Google Scholar 

  • Zoltai SC, Taylor S, Jeglum J K, Mills GF, Johnson JD (1988) Wetlands of boreal Canada. In: Wetlands of Canada, by National Wetlands Working Group, Canada Committee on Ecological Classification. Polyscience Publications, Montreal, pp 97–154

Download references

Acknowledgements

We thank Vanesa Alí Santoro and Irene Fabricante for their valuable help in the production of maps. We appreciate the helpful suggestions and enthusiasm of Tamara Sánchez and Mariano Pérez Safontas of the Ministry of Environment of the Buenos Aires Province. We would also like to thank the professors of the Pedology Chair of the Faculty of Natural Sciences and Museum (National University of La Plata) for all the knowledge provided during the course, especially Laura Boff and Pablo Ontivero.

Funding

This work has been supported by the National Agency for Scientific and Technical Promotion of Argentina under Grants FONCyT MinCyT PICT-2019-0036, Federal Observatory for Socio-environmental Sustainability of Wetlands (PITES) EX-2021-24986500-APN-DDYGD#MCT.

Author information

Authors and Affiliations

Authors

Contributions

SN provided technical considerations of the soil database management, analyzed and integrated soil databases and developed maps tables and figures. JO edited and reviewed the different manuscript versions. PK set up the objectives and the initial version of the manuscript and performed data analysis of high-resolution imagery. All authors edited and reviewed the different manuscript versions and read and approved the final paper.

Corresponding author

Correspondence to Soledad María Nomdedeu.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 19260 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomdedeu, S.M., Orzanco, J. & Kandus, P. Wetlands distribution in the agricultural-livestock core of the South American temperate pampas landscape. Approach from soil cartography. Wetlands Ecol Manage 32, 229–248 (2024). https://doi.org/10.1007/s11273-023-09972-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-023-09972-x

Keywords

Navigation