Skip to main content
Log in

Experimental and Theoretical Investigation of the Effect of Cellulose Nanowhiskers on the Pb(II) Adsorption by Superabsorbent Hydrogel Nanocomposites

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cellulose nanowhiskers (CNWs) were incorporated into a superabsorbent hydrogel of starch grafted with poly(acrylic acid) (ST-g-PAAc) to obtain adsorbent materials with superior performance for Pb(II) removal from water. Herein, various experimental and theoretical analyses were conducted to highlight and elucidate the contribution of CNWs to the adsorption process. The presence of 10 wt% CNWs in the hydrogel led to an approximately 12% increase in the adsorption capacity of Pb(II) compared to the hydrogel without CNWs. Indeed, 25 mg of composite hydrogel required a short contact time (60 min) to achieve high adsorption capacities (935.8 mg/g). It was demonstrated that CNWs in the composite matrix also mitigate the effects of temperature and competition with other ions, enhancing the stability, selectivity, and efficiency of the Pb(II) adsorption.  Density functional theory (DFT) calculations revealed that the hydroxyl groups of CNWs play a crucial role by providing additional binding energies (30 kcal/mol) for Pb(II) ions, favoring the spontaneity and kinetics of the adsorption process. Kinetic and isothermal investigations revealed that the adsorption process on the CNW-containing hydrogel involves chemisorption and intra-particle diffusion, indicating multiple steps during the adsorption of Pb(II) ions. Furthermore, the CNW-containing hydrogel demonstrated excellent reusability, with only an 8% loss in adsorption capacity after six consecutive reuses. This characteristic makes the composite hydrogel highly attractive for practical applications in real-world scenarios. In summary, the experimental and theoretical data collected in this study confirm the superior adsorption performance of the composite hydrogel due to the presence of CNWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Abia, A. A., & Asuquo, E. D. (2006). Lead (II) and nickel (II) adsorption kinetics from aqueous metal solutions using chemically modified and unmodified agricultural adsorbents. African Journal of Biotechnology, 5(16), 1475–1482.

    CAS  Google Scholar 

  • Agate, S., Joyce, M., Lucia, L., & Pal, L. (2018). Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites - a review. Carbohydrate Polymers, 198, 249–260. https://doi.org/10.1016/j.carbpol.2018.06.045

    Article  CAS  Google Scholar 

  • Ahmad, A. Y., Al-Ghouti, M. A., Khraisheh, M., & Zouari, N. (2022). Development and application of bio-waste-derived adsorbents for the removal of boron from groundwater. Groundwater for sustainable development, 18. https://doi.org/10.1016/j.gsd.(2022)100793.

  • Ahmad, K., Shah, H. U. R., Khan, M. S., Iqbal, A., Potrich, E., Amaral, L. S., Rasheed, S., Nawaz, H., Ayub, A., Naseem, K., Muhammad, A., Yaqoob, M. R., & Ashfaq, M. (2022). Lead in drinking water: Adsorption method and role of zeolitic imidazolate frameworks for its remediation: A review. Journal of Cleaner Production, 368. https://doi.org/10.1016/j.jclepro.(2022)133010.

  • Ahmed, M., Mavukkandy, M. O., Giwa, A., Elektorowicz, M., Katsou, E., Khelifi, O., Naddeo, V., & Hasan, S.W. (2022). Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy. Npj Clean Water, 5(1). https://doi.org/10.1038/s41545-022-00154-5.

  • Al-Ghouti, M., Khraisheh, M. A. M., Ahmad, M. N. M., & Allen, S. (2005). Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: A kinetic study. Journal of Colloid Interface Science, 287(1), 6–13. https://doi.org/10.1016/j.jcis.2005.02.002

    Article  CAS  Google Scholar 

  • Anbazhagan, S., Thiruvengadam, V., & Sukeri, A. (2021). An Amberlite IRA-400 Cl- ion-exchange resin modified with Prosopis juliflora seeds as an efficient Pb2+ adsorbent: Adsorption, kinetics, thermodynamics, and computational modeling studies by density functional theory. RSC Advances, 11, 4478–4488. https://doi.org/10.1039/d0ra10128a

    Article  CAS  Google Scholar 

  • Badsha, M. A. H., Khan, M., Wu, B. L., Kumar, A., & Lo, I. M. C. (2021). Role of surface functional groups of hydrogels in metal adsorption: From performance to mechanism. Journal of Hazardous Materials, 408. https://doi.org/10.1016/j.jhazmat.(2020)124463.

  • Bangar, S. P., Harussani, M. M., Ilyas, R. A., Ashogbon, A. O., Singh, A., Trif, M., & Jafari, S. M. (2022). Surface modifications of cellulose nanocrystals: Processes, properties, and applications. Food Hydrocolloids, 130. https://doi.org/10.1016/j.foodhyd.(2022)107689.

  • Bannwarth, C., Ehlert, S., & Grimme, S. (2019). GFN2-xTB-an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. Journal of Chemical Theory and Computation, 15, 1652–1671. https://doi.org/10.1021/acs.jctc.8b01176

    Article  CAS  Google Scholar 

  • Barone, V., & Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. The Journal of Physical Chemistry A, 102, 1995–2001. https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

  • Bashir, A., Manzoor, T., Malik, L. A., Qureashi, A., & Pandith, A. H. (2020). Enhanced and selective adsorption of Zn(II), Pb(II), Cd(II), and Hg(II) Ions by a dumbbell- and flower-shaped potato starch phosphate polymer: A combined experimental and DFT calculation study. ACS Omega, 5(10), 4853–4867. https://doi.org/10.1021/acsomega.9b03607

    Article  CAS  Google Scholar 

  • Brannonpeppas, L., & Peppas, N. A. (1991). Equilibrium swelling behavior of pH-sensitive hydrogels. Chemical Engineering Science, 46(3), 715–722. https://doi.org/10.1016/0009-2509(91)80177-z

    Article  CAS  Google Scholar 

  • Cao, H., Ma, X. N., Wei, Z. Q., Tan, Y., Chen, S. W., Ye, T., Yuan, M., Yu, J. S., Wu, X. X., Yin, F. Q., & Xu, F. (2022). Behavior and mechanism of the adsorption of lead by an eco-friendly porous double-network hydrogel derived from keratin. Chemosphere, 289. https://doi.org/10.1016/j.chemosphere.(2021)133086.

  • Cruz-Lopes, L. P., Macena, M., Esteves, B., & Guine, R. P. F. (2021). Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+ in aqueous solution with different adsorbent materials. Open Agriculture, 6(1), 115–123. https://doi.org/10.1515/opag-2021-0225

    Article  Google Scholar 

  • Curvello, R., Raghuwanshi, V. S., & Garnier, G. (2019). Engineering nanocellulose hydrogels for biomedical applications. Advances in Colloid and Interface Science, 267, 47–61. https://doi.org/10.1016/j.cis.(2019)03.002

    Article  CAS  Google Scholar 

  • Dotto, G. L., & McKay, G. (2020). Current scenario and challenges in adsorption for water treatment. Journal Environmental Chemical Engineering, 8(4). https://doi.org/10.1016/j.jece.(2020)10.3988.

  • Fadl, M. G. (2023). Prediction of heavy metal biosorption mechanism through studying isotherm kinetic equations. Scientific reports, 13(1). https://doi.org/10.1038/s41598-023-28655-4.

  • Feng, C. T., Ren, P. G., Li, Z., Tan, W. Z., Zhang, H., Jin, Y. L., & Ren, F. (2020). Graphene/waste-newspaper cellulose composite aerogels with selective adsorption of organic dyes: Preparation, characterization, and adsorption mechanism. New Journal Chemistry, 44, 2256–2267. https://doi.org/10.1039/c9nj05346h

    Article  CAS  Google Scholar 

  • Fiol, N., & Villaescusa, I. (2009). Determination of sorbent point zero charge: Usefulness in sorption studies. Environmental Chemistry Letters, 7(1), 79–84. https://doi.org/10.1007/s10311-008-0139-0

    Article  CAS  Google Scholar 

  • Gabriel, T., Belete, A., Hause, G., Neubert, R. H. H., & Gebre-Mariam, T. (2022). Nanocellulose-based nanogels for sustained drug delivery: Preparation, characterization and in vitro evaluation. Journal of Drug Delivery Science Technology, 75. https://doi.org/10.1016/j.jddst.(2022)103665.

  • Gomes, R. F., de Azevedo, A. C. N., Pereira, A. G. B., Muniz, E. C., Fajardo, A. R., & Rodrigues, F. H. A. (2015). Fast dye removal from water by starch-based nanocomposites. Journal of Colloid Interface Science, 454, 200–209. https://doi.org/10.1016/j.jcis.2015.05.026

    Article  CAS  Google Scholar 

  • Grimme, S., Ehrlich, S., & Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32(7), 1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  Google Scholar 

  • Helmich-Paris, B., Souza, B., Neese, F., & Izsak, R. (2021). An improved chain of spheres for exchange algorithm. The Journal of Chemical Physics, 155(10). https://doi.org/10.1063/5.0058766.

  • Hu, Q., & Zhang, Z. (2019). Application of Dubinin-Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. Journal of Molecular Liquids, 277, 646–648. https://doi.org/10.1016/j.molliq.2019.01.005

    Article  CAS  Google Scholar 

  • Hubbe, M. A., Azizian, S., & Douven, S. (2019). Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources, 14(3), 7582–7626.

    Article  Google Scholar 

  • Huo, Y., Liu, Y. Y., Xia, M. F., Du, H., Lin, Z. Y., Li, B., & Liu, H. B. (2022). Nanocellulose-based composite materials used in drug delivery systems. Polymer,s 14(13). https://doi.org/10.3390/polym14132648.

  • Jiang, C. L., Wang, X. G., Wang, G. H., Hao, C., Li, X., & Li, T. G. (2019). Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions. Composite Part B: Engineering, 169, 45–54. https://doi.org/10.1016/j.compositesb.(2019)03.082

    Article  CAS  Google Scholar 

  • Jioui, I., Abrouki, Y., Aboul Hrouz, S., Sair, S., Dânoun, K., & Zahouily, M. (2023). Efficient removal of Cu2+ and methylene blue pollutants from an aqueous solution by applying a new hybrid adsorbent based on alginate-chitosan and HAP derived from Moroccan rock phosphate. Environmental Science and Pollution Research International, 30, 107790–107810. https://doi.org/10.1007/s11356-023-29890-y

    Article  CAS  Google Scholar 

  • Kannan, C., Sundaram, T., & Palvannan, T. (2008). Environmentally stable adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution. Journal of Hazardous Materials, 157(1), 137–145. https://doi.org/10.1016/j.jhazmat.2007.12.116

    Article  CAS  Google Scholar 

  • Lan, G. X., Liu, Y., Zhou, N., Guo, D. Q., & Ma, M. G. (2023). Multifunctional nanocellulose-based composites for potential environmental applications. Cellulose, 30(1), 39–60. https://doi.org/10.1007/s10570-022-04918-7

    Article  CAS  Google Scholar 

  • Li, J., Xu, Z. Y., Wu, W. B., Jing, Y., Dai, H. Q., & Fang, G. G. (2018). Nanocellulose/Poly(2-(dimethylamino) ethyl methacrylate) interpenetrating polymer network hydrogels for removal of Pb(II) and Cu(II) ions. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 538, 474–480. https://doi.org/10.1016/j.colsurfa.2017.11.019

    Article  CAS  Google Scholar 

  • Lin, Z., Yang, Y., Liang, Z., Zeng, L., & Zhang, A. (2021). Preparation of chitosan/calcium alginate/bentonite composite hydrogel and its heavy metal ions adsorption properties. Polymers, 13(11), 1891. https://doi.org/10.3390/polym13111891

    Article  CAS  Google Scholar 

  • Lin, X. R., Shen, T., Li, M. G., Shaoyu, J. W., Zhuang, W., Li, M., Xu, H., Zhu, C. J., Ying, H. J., & Ouyang, P. K. (2022). Synthesis, characterization, and utilization of poly-amino acid-functionalized lignin for efficient and selective removal of lead ion from aqueous solution. Jounal of Cleaner Production, 347. https://doi.org/10.1016/j.jclepro.(2022)131219.

  • Liu, Y. J., Meng, L. D., Han, K., & Sun, S. J. (2021). Synthesis of nano-zirconium-iron oxide supported by activated carbon composite for the removal of Sb(v) in aqueous solution. RSC Advances, 11, 31131–31141. https://doi.org/10.1039/d1ra06117h

    Article  CAS  Google Scholar 

  • Liu, M. Y., Liu, Y., Shen, J. J., Zhang, S. Y., Liu, X. Y., Chen, X. X., Ma, Y. L., Ren, S. X., Fang, G. Z., Li, S. J., Li, C. T., & Sun, T. (2020). Simultaneous removal of Pb2+, Cu2+ and Cd2+ ions from wastewater using hierarchical porous polyacrylic acid grafted with lignin. Journal of Hazardous Materials, 392. https://doi.org/10.1016/j.jhazmat.(2020)122208.

  • Liu, S. (2023). Preparation of nanocellulose grafted molecularly imprinted polymer for selective adsorption Pb(II) and Hg(II). Chemosphere, 316. https://doi.org/10.1016/j.chemosphere.(2023)137832.

  • Maturavongsadit, P., Paravyan, G., Shrivastava, R., & Benhabbour, S. R. (2020). Thermo-/pH-responsive chitosan-cellulose nanocrystals based hydrogel with tunable mechanical properties for tissue regeneration applications. Materialia, 12. https://doi.org/10.1016/j.mtla.(2020)100681.

  • Mitra, S., Chakraborty, A. J., Tareq, A., Bin, E. T., Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A., & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University - Science, 34(3). https://doi.org/10.1016/j.jksus.(2022)101865.

  • Mumonde, T. S., Nqombolo, A., Hobongwana, S., Mpupa, A., & Nomngongo, P. N. (2023). Removal of methylene blue using MnO2@rGO nanocomposite from textile wastewater: Isotherms, kinetics and thermodynamics studies. Heliyon, 9, e15502. https://doi.org/10.1016/j.heliyon.2023.e15502

    Article  CAS  Google Scholar 

  • Neese, F. (2022). Software update: The ORCA program system-version 5.0. Wiley interdisciplinary reviews-computational molecular science, 12(5). https://doi.org/10.1002/wcms.1606.

  • Pakulski, D., Gorczynski, A., Marcinkowski, D., Czepa, W., Chudziak, T., Witomska, S., Nishina, Y., Patroniak, V., Ciesielski, A., & Samori, P. (2021). High-sorption terpyridine-graphene oxide hybrid for the efficient removal of heavy metal ions from wastewater. Nanoscale, 13, 10490–10499. https://doi.org/10.1039/d1nr02255e

    Article  CAS  Google Scholar 

  • Peer, F. E., Bahramifar, N., & Younesi, H. (2018). Removal of Cd (II), Pb (II) and Cu (II) ions from aqueous solution by polyamidoamine dendrimer grafted magnetic graphene oxide nanosheets. Journal of the Taiwan Institute of Chemical EngIneers, 87(17), 225–240. https://doi.org/10.1016/j.jtice.2018.03.039

    Article  CAS  Google Scholar 

  • Pereira, A. G. B., Fajardo, A. R., Nocchi, S., Nakamura, C. V., Rubira, A. F., & Muniz, E. C. (2013). Starch-based microspheres for sustained-release of curcumin: Preparation and cytotoxic effect on tumor cells. Carbohydrate Polymers, 98, 711–720. https://doi.org/10.1016/j.carbpol.2013.06.013

    Article  CAS  Google Scholar 

  • Pereira, A. G. B., Rodrigues, F. H. A., Paulino, A. T., Martins, A. F., & Fajardo, A. R. (2021). Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review. Journal of Cleaner Production, 284. https://doi.org/10.1016/j.jclepro.(2020)124703.

  • Perez-Botella, E., Valencia, S., & Rey, F. (2022). Zeolites in adsorption processes: State of the art and future prospects. Chemical Reviews, 122(24), 17647–17695. https://doi.org/10.1021/acs.chemrev.2c00140

    Article  CAS  Google Scholar 

  • Perumal, S., Lee, H., Jeon, S., Yoon, D. H., & Cheong, I. W. (2021). Synthetization of hybrid nanocellulose aerogels for the removal of heavy metal ions. Journal of Polymer Research, 28(8). https://doi.org/10.1007/s10965-021-02693-w.

  • Postai, D. L., Demarchi, C. A., Zanatta, F., Melo, D. C. C., & Rodrigues, C. A. (2016). Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites moluccana, a low cost adsorbent. Alexandria Engineering JOurnal, 55(2), 1713–1723. https://doi.org/10.1016/j.aej.2016.03.017

    Article  Google Scholar 

  • Rodrigues, F. H. A., Magalhães, C. E. C., Medina, A. L., & Fajardo, A. R. (2019). Hydrogel composites containing nanocellulose as adsorbents for aqueous removal of heavy metals: Design, optimization, and application. Cellulose, 26, 9119–9133. https://doi.org/10.1007/s10570-019-02736-y

    Article  CAS  Google Scholar 

  • Saha, P., & Chowdhury, S. (2012). Insight into adsorption thermodynamics. Thermodynamics. Mizutani Tadashi (Ed.). InTech, 349–367. https://doi.org/10.5772/13474.

  • Shen, J., Xu, X. Y., Ouyang, X. K., & Jin, M. C. (2022). Adsorption of Pb(II) from aqueous solutions using nanocrystalline cellulose/sodium alginate/K-carrageenan composite hydrogel beads. Journal of Polymers and the Environment, 30(5), 1995–2006. https://doi.org/10.1007/s10924-021-02334-9

    Article  CAS  Google Scholar 

  • Spagnol, C., Rodrigues, F. H. A., Pereira, A. G. B., Fajardo, A. R., Rubira, A. F., & Muniz, E. C. (2012a). Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydrate Polymers, 87(3), 2038–2045. https://doi.org/10.1016/j.carbpol.2011.10.017

    Article  CAS  Google Scholar 

  • Spagnol, C., Rodrigues, F. H. A., Pereira, A. G. B., Fajardo, A. R., Rubira, A. F., & Muniz, E. C. (2012b). Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose, 19(4), 1225–1237. https://doi.org/10.1007/s10570-012-9711-7

    Article  CAS  Google Scholar 

  • Su, Y. L., Yang, L. M., Weng, S. F., & Wu, J. G. (2002). Interactions between metal ions and carbohydrates: Coordination behavior of D-ribose to lanthanide ions. Journal of Rare Earths, 20(5), 339–342.

    Google Scholar 

  • Tan, K. L., & Hameed, B. H. (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical EngIneers, 74, 25–48. https://doi.org/10.1016/j.jtice.2017.01.024

    Article  CAS  Google Scholar 

  • Thirumavalavan, M., Lai, Y. L., Lin, L. C., & Lee, J. F. (2010). Cellulose-based native and surface modified fruit peels for the adsorption of heavy metal ions from aqueous solution: Langmuir adsorption isotherms. Journal of Chemical & Engineering Data, 55(3), 1186–1192. https://doi.org/10.1021/je900585t

    Article  CAS  Google Scholar 

  • Unuabonah, E. I., Adebowale, K. O., Olu-Owolabi, B. I., & Yang, L. Z. (2008). Comparison of sorption of Pb2+ and Cd2+ on kaolinite clay and polyvinyl alcohol-modified kaolinite clay. Adsorption, 14, 791–803. https://doi.org/10.1007/s10450-008-9142-9

    Article  CAS  Google Scholar 

  • Vojnovic, B., Cetina, M., Franjkovic, P., & Sutlovic, A. (2022). Influence of initial pH value on the adsorption of reactive black 5 dye on powdered activated carbon: Kinetics, mechanisms, and thermodynamics. Molecules, 27(4). https://doi.org/10.3390/molecules27041349.

  • Wang, W. B., Huang, D. J., Kang, Y. R., & Wang, A. Q. (2013). One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloids and Surfaces B: Biointerfaces, 106, 51–59. https://doi.org/10.1016/j.colsurfb.2013.01.030

    Article  CAS  Google Scholar 

  • Weigend, F. (2006). Accurate Coulomb-fitting basis sets for H to Rn. Physical Chemistry Chemical Physics, 8(9), 1057–1065. https://doi.org/10.1039/b515623h

    Article  CAS  Google Scholar 

  • Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297–3305. https://doi.org/10.1039/b508541a

    Article  CAS  Google Scholar 

  • Wu, F. C., Tseng, R. L., & Juang, R. S. (1999). Role of pH in metal adsorption from aqueous solutions containing chelating agents on chitosan. Industrial & Engineering Chemistry Research, 38, 270–275. https://doi.org/10.1021/ie980242w

    Article  CAS  Google Scholar 

  • Wu, H. T., Han, X. T., Zhao, W., Zhang, Q., Zhao, A. G., & Xia, J. R. (2022). Mechanical and electrochemical properties of UV-curable nanocellulose/ urushiol epoxy acrylate anti-corrosive composite coatings. Industrial crops and products, 181. https://doi.org/10.1016/j.indcrop.(2022)114805.

  • Xu, X. Y., Ouyang, X. K., & Yang, L. Y. (2021). Adsorption of Pb(II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads. Journal of Molecular Liquids, 322. https://doi.org/10.1016/j.molliq.(2020)114523.

  • Yu, S. J., Sun, J. Z., Shi, Y. F., Wang, Q. Q., Wu, J., & Liu, J. (2021). Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products. Environmental Science and Ecotechnology, 5, 100077. https://doi.org/10.1016/j.ese.(2020)100077

    Article  CAS  Google Scholar 

  • Yue, Y. Y., Wang, X. H., Han, J. Q., Yu, L., Chen, J. Q., Wu, Q. L., & Jiang, J. C. (2019). Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities. Carbohydrate Polymers, 206, 289–301. https://doi.org/10.1016/j.carbpol.2018.10.105

    Article  CAS  Google Scholar 

  • Zhang, K., & Yang, S. T. (2015). Effect of pH on fumaric acid adsorption onto IRA900 ion exchange resin. Separation Science and Technology, 50(1), 56–63. https://doi.org/10.1080/01496395.2014.956182

    Article  CAS  Google Scholar 

  • Zhang, W., Hu, L., Hu, S., & Liu, Y. (2019). Optimized synthesis of novel hydrogel for the adsorption of copper and cobalt ions in wastewater. RSC Advances, 9, 16058–16068. https://doi.org/10.1039/C9RA00227H

    Article  CAS  Google Scholar 

  • Zhao, H., Ouyang, X. K., & Yang, L. Y. (2021). Adsorption of lead ions from aqueous solutions by porous cellulose nanofiber-sodium alginate hydrogel beads. Journal of Molecular Liquids, 324. https://doi.org/10.1016/j.molliq.(2020)115122.

  • Zulfiqar, M., Lee, S. Y., Mafize, A. A., Kahar, N., Johari, K., & Rabat, N. E. (2020). Efficient removal of Pb(II) from aqueous solutions by using oil palm bio-waste/MWCNTs reinforced PVA hydrogel composites: Kinetic, isotherm and thermodynamic modeling. Polymers, 12(2). https://doi.org/10.3390/polym12020430.

Download references

Acknowledgements

A.R.F. is grateful to CNPq for his PQ fellowship (process 303125/2022-5).

Funding

This study was partially supported by the National Council for Scientific and Technological Development (CNPq/Brazil) (process 409674/2021–4) and the Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) is also recognized for the fellowship to F.H.A.R. (grant BP5-0197–00169.01.00/22).

Author information

Authors and Affiliations

Authors

Contributions

André R. Fajardo and Francisco H.A. Rodrigues contributed to the conceptualization and design of this work. All the authors contributed to the formal investigation, data collection in the first draft of the manuscript, and its review. All authors also read and approved the final manuscript.

Corresponding authors

Correspondence to André R. Fajardo or Francisco H. A. Rodrigues.

Ethics declarations

Consent for Publication

All authors have provided their consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 792 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fajardo, A.R., Oliboni, R.S., de Magalhães, C.E.C. et al. Experimental and Theoretical Investigation of the Effect of Cellulose Nanowhiskers on the Pb(II) Adsorption by Superabsorbent Hydrogel Nanocomposites. Water Air Soil Pollut 235, 35 (2024). https://doi.org/10.1007/s11270-023-06837-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06837-0

Keywords

Navigation