Skip to main content
Log in

Construction of OTAB/Bt/TiO2 Composite Photocatalysts to Improve the Adsorption and Photocatalytic Performance for SCN Removal

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The widespread use of cyanidation in gold beneficiation leads to a large amount of SCN in the gold extract tail solution, which poses a threat to the environment and human health. The present study successfully synthesized octadecyltrimethylammonium bromide/bentonite/titanium dioxide (OTAB/Bt/TiO2) photocatalysts through a sol–gel hydrothermal approach. Evaluation of the BET specific surface area, X-ray diffraction (XRD) analysis, UV–vis diffuse reflectance spectroscopy, and zeta potential experiments unveiled the beneficial impact of incorporating OTAB. This inclusion led to an enlargement of the pore size and layer spacing of Bt, broadening the range of photoresponses. Additionally, it effectively neutralized the negative charge residing on the surface of Bt. Consequently, these enhancements contributed to the improved performance of the photocatalytic material in terms of adsorption and catalytic degradation of SCN. The degradation rate of SCN reached 98.78% under the reaction conditions of initial SCN concentration of 50 mg/L, OTAB/Bt/TiO2 dosage of 0.8 g/L, pH = 8, and reaction time of 300 min. The degradation of the SCN composite through the OTAB/Bt/TiO2 photocatalytic process followed a zero-order kinetic model with a calculated rate constant (k value) of 0.1148 min−1. Notably, this rate constant was 1.9 times greater than the degradation rate observed in the pure TiO2 system. The free radical quenching test showed that h+, ∙OH and ∙O2− were the main oxidizing substances for photocatalytic degradation. The identification of intermediates proved that the complete mineralization of SCN could be achieved by OTAB/Bt/TiO2 adsorption and photocatalytic degradation without generating the highly toxic intermediate CN. Overall, this study provides guidance for the development of more photocatalysts with strong adsorption properties and more effective removal of SCN from gold extraction tailings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Ajel, M. K., & Al-Nayili, A. (2022). Synthesis, characterization of Ag-WO3/bentonite nanocomposites and their application in photocatalytic degradation of humic acid in water. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-23614-4

    Article  Google Scholar 

  • Alkizwini, R. S., & Alquzweeni, S. S. (2021). Modeling natural bentonite, thermal-modified bentonite and iron-modified bentonite with artificial neural network, sorption kinetics and sorption isotherms for simulated sorption tetracycline. International Journal of Environmental Science and Technology, 18(9), 2633–2650. https://doi.org/10.1007/s13762-020-03004-4

    Article  CAS  Google Scholar 

  • Amaya, J., Suarez, N., Moreno, A., Moreno, S., & Molina, R. (2020). Mo or W catalysts promoted with Ni or Co supported on modified bentonite for decane hydroconversion. New Journal of Chemistry, 44(7), 2966–2979. https://doi.org/10.1039/c9nj04878b

    Article  CAS  Google Scholar 

  • Aminy, D. E., Rusdiarso, B., & Mudasir, M. (2022). Adsorption of Cd (II) ion from the solution using selective adsorbent of dithizone-modified commercial bentonite. International Journal of Environmental Science and Technology, 19(7), 6399–6410. https://doi.org/10.1007/s13762-021-03570-1

    Article  CAS  Google Scholar 

  • Anirudhan, T. S., & Ramachandran, M. (2015). Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Safety and Environmental Protection, 95, 215–225. https://doi.org/10.1016/j.psep.2015.03.003

    Article  CAS  Google Scholar 

  • Azadi, S., Karimi-Jashni, A., Javadpour, S., & Amiri, H. (2020). Photocatalytic treatment of landfill leachate using cascade photoreactor with immobilized W-C-codoped TiO 2 nanoparticles. Journal of Water Process Engineering, 36. https://doi.org/10.1016/j.jwpe.2020.101307

  • Bezsudnova, EYu., Sorokin, DYu., Tikhonova, T. V., & Popov, V. O. (2007). Thiocyanate hydrolase, the primary enzyme initiating thiocyanate degradation in the novel obligately chemolithoautotrophic halophilic sulfur-oxidizing bacterium Thiohalophilus thiocyanoxidans. Biochimica et Biophysica Acta-Proteins and Proteomics, 1774(12), 1563–1570. https://doi.org/10.1016/j.bbapap.2007.09.003

    Article  CAS  Google Scholar 

  • Bhattacharyya, K. G., & Sen Gupta, S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140(2), 114–131. https://doi.org/10.1016/j.cis.2007.12.008

    Article  CAS  Google Scholar 

  • Budaev, S. L., Batoeva, A. A., & Tsybikova, B. A. (2015). Degradation of thiocyanate in aqueous solution by persulfate activated ferric ion. Minerals Engineering, 81, 88–95. https://doi.org/10.1016/j.mineng.2015.07.010

    Article  CAS  Google Scholar 

  • Cao, X., Luo, S., Liu, C., & Chen, J. (2017). Synthesis of bentonite-supported Fe2O3-doped TiO2 superstructures for highly promoted photocatalytic activity and recyclability. Advanced Powder Technology. https://doi.org/10.1016/j.apt.2017.01.003

    Article  Google Scholar 

  • Chen, F., Yang, H., Luo, W., Wang, P., & Yu, H. (2017). Selective adsorption of thiocyanate anions on Ag-modified g-C3N4 for enhanced photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 38(12), 1990–1998. https://doi.org/10.1016/S1872-2067(17)62971-1

    Article  CAS  Google Scholar 

  • Chen, W., Xiao, H., Xu, H., Ding, T., & Gu, Y. (2015). Photodegradation of methylene blue by TiO2-Fe3O4-bentonite magnetic nanocomposite. International Journal of Photoenergy. https://doi.org/10.1155/2015/591428

    Article  Google Scholar 

  • Combarros, R. G., Collado, S., Laca, A., & Diaz, M. (2015). Conditions and mechanisms in thiocyanate biodegradation. Journal of Residuals Science & Technology, 12(3), 113–124. https://doi.org/10.12783/issn.1544-8053/12/3/1

    Article  CAS  Google Scholar 

  • Du, Y., Niu, X., Bai, Y., Qi, H., Guo, Y., Chen, Y., et al. (2019). Synthesis of anatase TiO2 nanocrystals with defined morphologies from exfoliated nanoribbons: Photocatalytic performance and application in dye-sensitized solar cell. ChemistrySelect, 4(15), 4443–4457. https://doi.org/10.1002/slct.201900257

    Article  CAS  Google Scholar 

  • El-Korashy, S. A., Elwakeel, K. Z., & Abd El-Hafeiz, A. (2016). Fabrication of bentonite/thiourea-formaldehyde composite material for Pb(II), Mn(VII) and Cr(VI) sorption: A combined basic study and industrial application. Journal of Cleaner Production, 137, 40–50. https://doi.org/10.1016/j.jclepro.2016.07.073

    Article  CAS  Google Scholar 

  • García-García, F. A., Cristiani-Urbina, E., Morales-Barrera, L., Rodríguez-Peña, O. N., Hernández-Portilla, L. B., & Flores-Ortíz, C. M. (2023). Spectroscopic and microestructural evidence for T-2 toxin adsorption mechanism by natural bentonite modified with organic cations. Toxins. https://doi.org/10.3390/toxins15070470

    Article  Google Scholar 

  • Gao, K., Li, Y., & Na, P. (2020). Insight into design of MIL-125(Ti)-based composite with boosting photocatalytic activity: the embedded multiple Fe oxide count. Advanced Materials Interfaces, 7(2). https://doi.org/10.1002/admi.201901449

  • Gao, Q., Yang, G., Jiang, Z., Ji, X., Yan, J., & Chen, J. (2019). Activated carbon adsorption combined with TiO_2 photocatalytic separation and purification of xylose from poplar wood pre-hydrolysate. Transactions of China Pulp and Paper, 38(11), 16–24.

    Google Scholar 

  • Gu, J., Hu, X., Niu, Y., Xiu, S., Wang, J., & Li, Y. (2019). Experimental study of activated carbon/TiO_2 photocatalytic purification of indoor formaldehyde. CIESC Journal, 48(8), 1791–1794. https://doi.org/10.16581/j.cnki.issn1671-3206.2019.08.001

    Article  Google Scholar 

  • Guo, D., Feng, D., Zhang, Y., Zhang, Z., Wu, J., Zhao, Y., & Sun, S. (2022). Synergistic mechanism of biochar-nano TiO2 adsorption-photocatalytic oxidation of toluene. Fuel Processing Technology, 229. https://doi.org/10.1016/j.fuproc.2022.107200

  • Haciyakupoglu, S., & Orucoglu, E. (2013). Se-75 radioisotope adsorption using Turkey’s Resadiye modified bentonites. Applied Clay Science, 86, 190–198. https://doi.org/10.1016/j.clay.2013.10.010

    Article  CAS  Google Scholar 

  • He, H., Wu, T., Shu, X., Chai, K., Qiu, Z., Wang, S., & Yao, J. (2023). Enhanced organic contaminant retardation by CTMAB-modified bentonite backfill in cut-off walls: laboratory test and numerical investigation. Materials, 16(3). https://doi.org/10.3390/ma16031255

  • Hirakawa, T., & Nosaka, Y. (2002). Properties of O-2(center dot-) and OH center dot formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir, 18(8), 3247–3254. https://doi.org/10.1021/la015685a

    Article  CAS  Google Scholar 

  • Huang, J., Liu, Y., Jin, Q., Wang, X., & Yang, J. (2006). Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2006.09.088

    Article  Google Scholar 

  • Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., et al. (2017). Modified bentonite adsorption of organic pollutants of dye wastewater. Materials Chemistry and Physics, 202, 266–276. https://doi.org/10.1016/j.matchemphys.2017.09.028

    Article  CAS  Google Scholar 

  • Jiang, M., Zhang, M., Wang, L., Fei, Y., Wang, S., Nunez-Delgado, A., et al. (2022). Photocatalytic degradation of xanthate in flotation plant tailings by TiO2/graphene nanocomposites. Chemical Engineering Journal, 431. https://doi.org/10.1016/j.cej.2021.134104

  • Kaleta, J., Papciak, D., & Puszkarewicz, A. (2013). Assessment of usability of bentonite clays for removing phenol from water solutions. Rocznik Ochrona Srodowiska, 15, 2352–2368.

    Google Scholar 

  • Karavaiko, G., Kondrat’eva, T., Savari, E., Grigor’eva, N., & Avakyan, Z. (2000). Microbial degradation of cyanide and thiocyanate. Microbiology, 69(2), 167–173. https://doi.org/10.1007/BF02756193

    Article  CAS  Google Scholar 

  • Kaya, E. M. O., Ozcan, A. S., Gok, O., & Ozcan, A. (2013). Adsorption kinetics and isotherm parameters of naphthalene onto natural- and chemically modified bentonite from aqueous solutions. Adsorption-Journal of the International Adsorption Society, 19(2–4), 879–888. https://doi.org/10.1007/s10450-013-9542-3

    Article  CAS  Google Scholar 

  • Kuo, C.-Y., Jheng, H.-K., & Syu, S.-E. (2021). Effect of non-metal doping on the photocatalytic activity of titanium dioxide on the photodegradation of aqueous bisphenol A. Environmental Technology, 42(10), 1603–1611. https://doi.org/10.1080/09593330.2019.1674930

    Article  CAS  Google Scholar 

  • Li, H. (2018). High sulfur cyanide wastewater treatment and common problems. Tianjin Metallurgy, 6, 49–52.

    Google Scholar 

  • Jing-Yi, Li., Gao-Wa, S., & Li-Na, L. (2007). Photocatalytic degradation of organic pollutants on TiO2/bentonite. Acta Physico-Chimica Sinica, 23(1), 16–20. https://doi.org/10.3866/PKU.WHXB20070104

    Article  Google Scholar 

  • Li, X., Feng, X., Li, R., & Liu, W. (2022). Adsorption and photocatalytic properties of titanium dioxide/chitosan/bentonite composites for methylene blue. Russian Journal of Inorganic Chemistry, 67(SUPPL 2), S98–S113. https://doi.org/10.1134/S0036023622602124

    Article  Google Scholar 

  • Lin, M., Song, M., & Shen, X. (2012). Photocatalyst Tio(2) supported on bentonite for water organic pollutants purification: a literature review. In W. Fan (Ed.), (Vol. 463–464, pp. 967-+). Presented at the Advanced Materials Research II, PTS 1 AND 2. https://doi.org/10.4028/www.scientific.net/AMR.463-464.967

  • Ma, L., Linghu, S., Chen, Z., Wang, S., Gu, H., Pan, T., & Chen, X. (2023). Coupled use of modified bentonite and urea hydrogen peroxide to degrade paraxylene. Water Air and Soil Pollution, 234(4). https://doi.org/10.1007/s11270-023-06225-8

  • Maxim, L. D., Niebo, R., & McConnell, E. E. (2016). Bentonite toxicology and epidemiology - a review. Inhalation Toxicology, 28(13), 591–617. https://doi.org/10.1080/08958378.2016.1240727

    Article  CAS  Google Scholar 

  • Dlamini, M. C., Dlamini, M. L., Mente, P., Tlhaole, B., Erasmus, R., Maubane-Nkadimeng, M. S., & Moma, J. A. (2022). Photocatalytic abatement of phenol on amorphous TiO2-BiOBr-bentonite heterostructures under visible light irradiation. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2022.04.023

    Article  Google Scholar 

  • Mishra, A., Sharma, M., Mehta, A., & Basu, S. (2017). Microwave treated bentonite clay based TiO2 composites: An efficient photocatalyst for rapid degradation of methylene blue. Journal of Nanoscience and Nanotechnology, 17(2), 1149–1155. https://doi.org/10.1166/jnn.2017.12674

    Article  CAS  Google Scholar 

  • Olafadehan, O. A., Bello, V. E., & Amoo, K. O. (2022). Production and characterization of composite nanoparticles derived from chitosan, CTAB and bentonite clay. Chemical Papers, 76(8), 5063–5086. https://doi.org/10.1007/s11696-022-02228-7

    Article  CAS  Google Scholar 

  • Pan, X., Li, Y., Huang, H., Ren, Y., & Wang, C. (2009). Biodegradation of thiocyanide in coking wastewater and its interaction with phenol and ammonia nitrogen. CIESC Journal, 60(12), 3089–3096.

    CAS  Google Scholar 

  • Pandey, S. (2017). A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. Journal of Molecular Liquids, 241, 1091–1113. https://doi.org/10.1016/j.molliq.2017.06.115

    Article  CAS  Google Scholar 

  • Saleh, S., Mohammadnejad, S., Khorgooei, H., & Otadi, M. (2021). Photooxidation/adsorption of arsenic (III) in aqueous solution over bentonite/chitosan/TiO2 heterostructured catalyst. Chemosphere, 280. https://doi.org/10.1016/j.chemosphere.2021.130583

  • Selim, K., Rostom, M., Youssef, M., Abdel-Khalek, N., Abdel-Khalek, M., & Hassan, E. (2020). Surface modified bentonite mineral as a sorbent for Pb2+ and Zn2+ ions removal from aqueous solutions. Physicochemical Problems of Mineral Processing, 56(6), 145–157. https://doi.org/10.37190/ppmp/127833

    Article  CAS  Google Scholar 

  • Soegijono, C. J. B. (2017). Investigation of intercalation of sodium-montmorillonite with octadecyl trimethyl ammonium bromide surfactant. Jurnal Vokasi Indonesia. https://doi.org/10.7454/jvi.v5i1.106

    Article  Google Scholar 

  • Tai, M., Tang, H., Li, W., Feng, G., Zhang, S., Wang, N., & Pei, J. (2007). Advances in the treatment of cyanide in gold mine wastewater and tailings. China Resources Comprehensive Utilization, 2, 22–25.

    Google Scholar 

  • Tomic, Z., Asanin, D., Durovic-Pejcev, R., Dordevic, A., & Makreski, P. (2015). Adsorption of acetochlor herbicide on inorganic- and organic-modified bentonite monitored by mid-infrared spectroscopy and batch adsorption. Spectroscopy Letters, 48(9), 685–690. https://doi.org/10.1080/00387010.2014.962705

    Article  CAS  Google Scholar 

  • Vohra, M. S. (2011). removal of thiocyanate from synthetic wastewater using TiO2 mediated photocatalytic degradation process. Fresenius Environmental Bulletin, 20(5A), 1308–1313.

    CAS  Google Scholar 

  • Wang, C., Shi, H., & Li, Y. (2012). Preparation of bentonite supported nano titanium dioxide photocatalysts by electrostatic self-assembly method. Journal of Wuhan University of Technology-Materials Science Edition, 27(4), 603–607. https://doi.org/10.1007/s11595-012-0513-4

    Article  CAS  Google Scholar 

  • Wu, T., Sun, D., Li, Y., Zhang, H., & Lu, F. (2011). Thiocyanate removal from aqueous solution by a synthetic hydrotalcite sol. Journal of Colloid and Interface Science, 355(1), 198–203. https://doi.org/10.1016/j.jcis.2010.11.058

    Article  CAS  Google Scholar 

  • Yuan, J., Chang, Y., Zheng, C., Yang, X., Wang, W., & Xie, F. (2021). A review of cyanide tailings decyanidation technology. The Chinese Journal of Nonferrous Metals, 31(6), 1568–1581.

    Google Scholar 

  • Zhuang, X., Li, X., Yang, Y., Wang, N., Shang, Y., Zhou, Z., et al. (2020). Enhanced sulfamerazine removal via adsorption-photocatalysis using Bi2O3-TiO2/PAC ternary nanoparticles. WATER, 12(8). https://doi.org/10.3390/w12082273

Download references

Acknowledgements

We acknowledge the financial supports by the National Natural Science Foundation of China (Grant No. 51874304); the Graduate Innovation Program of China University of Mining and Technology (2023WLKXJ164); “the Fundamental Research Funds for the Central Universities”(2023XSCX046); “the Postgraduate Research & Practice Innovation Program of Jiangsu Province” (KYCX23_2835).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqing Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, L., Zhang, M. et al. Construction of OTAB/Bt/TiO2 Composite Photocatalysts to Improve the Adsorption and Photocatalytic Performance for SCN Removal. Water Air Soil Pollut 235, 79 (2024). https://doi.org/10.1007/s11270-023-06803-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06803-w

Keywords

Navigation